79,381 research outputs found

    A Model and Selected Instances of Green and Sustainable Software

    Full text link

    Identifying integrated options for agricultural climate change mitigation

    Get PDF
    Purpose: In order to achieve reductions in greenhouse gas emissions it is essential that all industry sectors have the appropriate knowledge and tools to contribute. This includes agriculture, which is considered to contribute about a third of emissions globally. This paper reports on one such tool: IMPACCT: Integrated Management oPtions for Agricultural Climate Change miTigation. Design/methodology/approach: IMPACCT focuses on greenhouse gas emissions, carbon sequestration and associated mitigation options. However, it also attempts to include information on economic and other environmental impacts in order to provide a more holistic perspective. The model identifies mitigation options, likely economic impacts and any synergies and trade-offs with other environmental objectives. The model has been applied on 22 case study farms in seven member states. Findings: The tool presents some useful concepts for developing carbon calculators in the future. It has highlighted that calculators need to evolve from simply calculating emissions to identifying cost effective and integrated emissions reduction options. Practical implications: IMPACCT has potential to become an effective means of provided targeted guidance, as part of a broader knowledge transfer programme based on an integrated suite of guidance, tools and advice delivered via different media. Originality/value: IMPACCT is a new model that demonstrates how to take a more integrated approach to mitigating greenhouse gas emissions on farms across Europe. It is a holistic carbon calculator that presents mitigation options in the context other environmental and economic objectives in the search for more sustainable methods of food production.Peer reviewedFinal Accepted Versio

    Building-integrated rooftop greenhouses: an energy and environmental assessment in the mediterranean context

    Get PDF
    A sustainable and secure food supply within a low-carbon and resilient infrastructure is encapsulated in several of The United Nations’ 17 sustainable development goals. The integration of urban agriculture in buildings can offer improved efficiencies; in recognition of this, the first south European example of a fully integrated rooftop greenhouse (iRTG) was designed and incorporated into the ICTA-ICP building by the Autonomous University of Barcelona. This design seeks to interchange heat, CO2 and rainwater between the building and its rooftop greenhouse. Average air temperatures for 2015 in the iRTG were 16.5 °C (winter) and 25.79 °C (summer), making the iRTG an ideal growing environment. Using detailed thermophysical fabric properties, 2015 site-specific weather data, exact control strategies and dynamic soil temperatures, the iRTG was modelled in EnergyPlus to assess the performance of an equivalent ‘freestanding’ greenhouse. The validated result shows that the thermal interchange between the iRTG and the ICTA-ICP building has considerable moderating effects on the iRTG’s indoor climate; since average hourly temperatures in an equivalent freestanding greenhouse would have been 4.1 °C colder in winter and 4.4 °C warmer in summer under the 2015 climatic conditions. The simulation results demonstrate that the iRTG case study recycled 43.78 MWh of thermal energy (or 341.93 kWh/m2/yr) from the main building in 2015. Assuming 100% energy conversion efficiency, compared to freestanding greenhouses heated with oil, gas or biomass systems, the iRTG delivered an equivalent carbon savings of 113.8, 82.4 or 5.5 kg CO2(eq)/m2/yr, respectively, and economic savings of 19.63, 15.88 or 17.33 €/m2/yr, respectively. Under similar climatic conditions, this symbiosis between buildings and urban agriculture makes an iRTG an efficient resource-management model and supports the promotion of a new typology or concept of buildings with a nexus or symbiosis between energy efficiency and food production.Postprint (published version

    Commissioning of the CMS High Level Trigger

    Get PDF
    The CMS experiment will collect data from the proton-proton collisions delivered by the Large Hadron Collider (LHC) at a centre-of-mass energy up to 14 TeV. The CMS trigger system is designed to cope with unprecedented luminosities and LHC bunch-crossing rates up to 40 MHz. The unique CMS trigger architecture only employs two trigger levels. The Level-1 trigger is implemented using custom electronics, while the High Level Trigger (HLT) is based on software algorithms running on a large cluster of commercial processors, the Event Filter Farm. We present the major functionalities of the CMS High Level Trigger system as of the starting of LHC beams operations in September 2008. The validation of the HLT system in the online environment with Monte Carlo simulated data and its commissioning during cosmic rays data taking campaigns are discussed in detail. We conclude with the description of the HLT operations with the first circulating LHC beams before the incident occurred the 19th September 2008

    An App Performance Optimization Advisor for Mobile Device App Marketplaces

    Full text link
    On mobile phones, users and developers use apps official marketplaces serving as repositories of apps. The Google Play Store and Apple Store are the official marketplaces of Android and Apple products which offer more than a million apps. Although both repositories offer description of apps, information concerning performance is not available. Due to the constrained hardware of mobile devices, users and developers have to meticulously manage the resources available and they should be given access to performance information about apps. Even if this information was available, the selection of apps would still depend on user preferences and it would require a huge cognitive effort to make optimal decisions. Considering this fact we propose APOA, a recommendation system which can be implemented in any marketplace for helping users and developers to compare apps in terms of performance. APOA uses as input metric values of apps and a set of metrics to optimize. It solves an optimization problem and it generates optimal sets of apps for different user's context. We show how APOA works over an Android case study. Out of 140 apps, we define typical usage scenarios and we collect measurements of power, CPU, memory, and network usages to demonstrate the benefit of using APOA.Comment: 18 pages, 8 figure

    A knowledge-based decision support system for roofing materials selection and cost estimating: a conceptual framework and data modelling

    Get PDF
    A plethora of materials is available to the modern day house designer but selecting the appropriate material is a complex task. It requires synthesising a multitude of performance criteria such as initial cost, maintenance cost, thermal performance and sustainability among others. This research aims to develop a Knowledge-based Decision support System for Material Selection (KDSMS) that facilitates the selection of optimal material for different sub elements of a roof design. The proposed system also has a facility for estimating roof cost based on the identified criteria. This paper presents the data modelling conceptual framework for the proposed system. The roof sub elements are modelled on the Building Cost Information Service (BCIS) Standard Form of Cost Analysis. This model consists of a knowledge base and a database to store different types of roofing materials with their corresponding performance characteristics and rankings. The system s knowledge is elicited from an extensive review of literature and the use of a domain expert forum. The proposed system employs the multi criteria decision method of TOPSIS (Technique of ranking Preferences by Similarity to the Ideal Solution), to resolve the materials selection and optimisation problem. The KDSMS is currently being developed for the housing sector of Northern Ireland

    Operationalizing the circular city model for naples' city-port: A hybrid development strategy

    Get PDF
    The city-port context involves a decisive reality for the economic development of territories and nations, capable of significantly influencing the conditions of well-being and quality of life, and of making the Circular City Model (CCM) operational, preserving and enhancing seas and marine resources in a sustainable way. This can be achieved through the construction of appropriate production and consumption models, with attention to relations with the urban and territorial system. This paper presents an adaptive decision-making process for Naples (Italy) commercial port's development strategies, aimed at re-establishing a sustainable city-port relationship and making Circular Economy (CE) principles operative. The approach has aimed at implementing a CCM by operationalizing European recommendations provided within both the Sustainable Development Goals (SDGs) framework-specifically focusing on goals 9, 11 and 12-and the Maritime Spatial Planning European Directive 2014/89, to face conflicts about the overlapping areas of the city-port through multidimensional evaluations' principles and tools. In this perspective, a four-step methodological framework has been structured applying a place-based approach with mixed evaluation methods, eliciting soft and hard knowledge domains, which have been expressed and assessed by a core set of Sustainability Indicators (SI), linked to SDGs. The contribution outcomes have been centred on the assessment of three design alternatives for the East Naples port and the development of a hybrid regeneration scenario consistent with CE and sustainability principles. The structured decision-making process has allowed us to test how an adaptive approach can expand the knowledge base underpinning policy design and decisions to achieve better outcomes and cultivate a broad civic and technical engagement, that can enhance the legitimacy and transparency of policies
    • …
    corecore