28,186 research outputs found

    A Model Predictive Control Scheme with Additional Performance Index for Transient Behavior

    Get PDF
    This paper presents a Model Predictive Control (MPC) scheme for nonlinear continuous time systems where an extra performance index, which is not a measure of the distance to the set point, is introduced to influence the transient behavior of the controlled system. The scheme is based on the following fact, proven in the paper: Given a stabilizing MPC controller, adding a function, integrable in the interval [t;+1), to the stage cost does not change the asymptotic convergence property of the closed loop state trajectory. As a numerical example, this result is applied to solve a simple visual servo control problem where an MPC controller drives the state to the origin while penalizing weakly observable trajectories

    Multiple Loop Self-Triggered Model Predictive Control for Network Scheduling and Control

    Full text link
    We present an algorithm for controlling and scheduling multiple linear time-invariant processes on a shared bandwidth limited communication network using adaptive sampling intervals. The controller is centralized and computes at every sampling instant not only the new control command for a process, but also decides the time interval to wait until taking the next sample. The approach relies on model predictive control ideas, where the cost function penalizes the state and control effort as well as the time interval until the next sample is taken. The latter is introduced in order to generate an adaptive sampling scheme for the overall system such that the sampling time increases as the norm of the system state goes to zero. The paper presents a method for synthesizing such a predictive controller and gives explicit sufficient conditions for when it is stabilizing. Further explicit conditions are given which guarantee conflict free transmissions on the network. It is shown that the optimization problem may be solved off-line and that the controller can be implemented as a lookup table of state feedback gains. Simulation studies which compare the proposed algorithm to periodic sampling illustrate potential performance gains.Comment: Accepted for publication in IEEE Transactions on Control Systems Technolog

    Neural Networks for Modeling and Control of Particle Accelerators

    Full text link
    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.Comment: 21 p

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Modeling an Aquifer: Numerical Solution to the Groundwater Flow Equation

    Full text link
    We present a model of groundwater dynamics under stationary flow and governed by Darcy's Law of water motion through porous media, we apply it to study a 2D aquifer with water table of constant slope comprised of an homogeneous and isotropic media, the more realistic case of an homogeneous anisotropic soil is also considered. Taking into account some geophysical parameters we develop a computational routine, in the Finite Difference Method, that solves the resulting elliptic partial equation, both in a homogeneous isotropic and homogeneous anisotropic media. After calibration of the numerical model, this routine is used to begin a study of the Ayamonte-Huelva aquifer in Spain, a modest analysis of the system is given, we compute the average discharge vector as well as its root mean square as a first predictive approximation of the flux in this system, providing us a signal of the location of best exploitation; long term goal is to develop a complete computational tool for the analysis of groundwater dynamics.Comment: 13 pages and 12 figure
    • …
    corecore