41,635 research outputs found

    Experiences and issues for environmental engineering sensor network deployments

    Get PDF
    Sensor network research is a large and growing area of academic effort, examining technological and deployment issues in the area of environmental monitoring. These technologies are used by environmental engineers and scientists to monitor a multiplicity of environments and services, and, specific to this paper, energy and water supplied to the built environment. Although the technology is developed by Computer Science specialists, the use and deployment is traditionally performed by environmental engineers. This paper examines deployment from the perspectives of environmental engineers and scientists and asks what computer scientists can do to improve the process. The paper uses a case study to demonstrate the agile operation of WSNs within the Cloud Computing infrastructure, and thus the demand-driven, collaboration-intense paradigm of Digital Ecosystems in Complex Environments

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Prognostics: Design, Implementation, and Challenges

    Get PDF
    Prognostics is an essential part of condition-based maintenance (CBM), described as predicting the remaining useful life (RUL) of a system. It is also a key technology for an integrated vehicle health management (IVHM) system that leads to improved safety and reliability. A vast amount of research has been presented in the literature to develop prognostics models that are able to predict a system’s RUL. These models can be broadly categorised into experience-based models, data-driven models and physics-based models. Therefore, careful consideration needs to be given to selecting which prognostics model to take forward and apply for each real application. Currently, developing reliable prognostics models in real life is challenging for various reasons, such as the design complexity associated with a system, the high uncertainty and its propagation in the degradation, system level prognostics, the evaluation framework and a lack of prognostics standards. This paper is written with the aim to bring forth the challenges and opportunities for developing prognostics models for complex systems and making researchers aware of these challenges and opportunities
    • …
    corecore