858,422 research outputs found

    A model based approach for complex dynamic decision-making

    Get PDF
    Current state-of-the-practice and state-of-the-art of decision-making aids are inadequate for modern organisations that deal with significant uncertainty and business dynamism. This paper highlights the limitations of prevalent decision-making aids and proposes a model-based approach that advances the modelling abstraction and analysis machinery for complex dynamic decision-making. In particular, this paper proposes a meta-model to comprehensively represent organisation, establishes the relevance of model-based simulation technique as analysis means, introduces the advancements over actor technology to address analysis needs, and proposes a method to utilise proposed modelling abstraction, analysis technique, and analysis machinery in an effective and convenient manner. The proposed approach is illustrated using a near real-life case-study from a business process outsourcing organisation

    A model based realisation of actor model to conceptualise an aid for complex dynamic decision-making

    Get PDF
    Effective decision-making of modern organisation requires deep understanding of various aspects of organisation such as its goals, structure, business-as-usual operational processes etc. The large size and complex structure of organisations, socio-technical characteristics, and fast business dynamics make this decision-making a challenging endeavour. The state-of-practice of decision-making that relies heavily on human experts is often reported as ineffective, imprecise and lacking in agility. This paper evaluates a set of candidate technologies and makes a case for using actor based simulation techniques as an aid for complex dynamic decision-making. The approach is justified by enumeration of basic requirements of complex dynamic decision-making and the conducting a suitability of analysis of state-of-the-art enterprise modelling techniques. The research contributes a conceptual meta-model that represents necessary aspects of organisation for complex dynamic decision-making together with a realisation in terms of a meta model that extends Actor model of computation. The proposed approach is illustrated using a real life case study from business process outsourcing industr

    A model based realisation of actor model to conceptualise an aid for complex dynamic decision-making

    Get PDF
    Effective decision-making of modern organisation requires deep understanding of various aspects of organisation such as its goals, structure, business-as-usual operational processes etc. The large size and complex structure of organisations, socio-technical characteristics, and fast business dynamics make this decision-making a challenging endeavour. The state-of-practice of decision-making that relies heavily on human experts is often reported as ineffective, imprecise and lacking in agility. This paper evaluates a set of candidate technologies and makes a case for using actor based simulation techniques as an aid for complex dynamic decision-making. The approach is justified by enumeration of basic requirements of complex dynamic decision-making and the conducting a suitability of analysis of state-of-the-art enterprise modelling techniques. The research contributes a conceptual meta-model that represents necessary aspects of organisation for complex dynamic decision-making together with a realisation in terms of a meta model that extends Actor model of computation. The proposed approach is illustrated using a real life case study from business process outsourcing industr

    Agent-based hybrid framework for decision making on complex problems

    Full text link
    Electronic commerce and the Internet have created demand for automated systems that can make complex decisions utilizing information from multiple sources. Because the information is uncertain, dynamic, distributed, and heterogeneous in nature, these systems require a great diversity of intelligent techniques including expert systems, fuzzy logic, neural networks, and genetic algorithms. However, in complex decision making, many different components or sub-tasks are involved, each of which requires different types of processing. Thus multiple such techniques are required resulting in systems called hybrid intelligent systems. That is, hybrid solutions are crucial for complex problem solving and decision making. There is a growing demand for these systems in many areas including financial investment planning, engineering design, medical diagnosis, and cognitive simulation. However, the design and development of these systems is difficult because they have a large number of parts or components that have many interactions. From a multi-agent perspective, agents in multi-agent systems (MAS) are autonomous and can engage in flexible, high-level interactions. MASs are good at complex, dynamic interactions. Thus a multi-agent perspective is suitable for modeling, design, and construction of hybrid intelligent systems. The aim of this thesis is to develop an agent-based framework for constructing hybrid intelligent systems which are mainly used for complex problem solving and decision making. Existing software development techniques (typically, object-oriented) are inadequate for modeling agent-based hybrid intelligent systems. There is a fundamental mismatch between the concepts used by object-oriented developers and the agent-oriented view. Although there are some agent-oriented methodologies such as the Gaia methodology, there is still no specifically tailored methodology available for analyzing and designing agent-based hybrid intelligent systems. To this end, a methodology is proposed, which is specifically tailored to the analysis and design of agent-based hybrid intelligent systems. The methodology consists of six models - role model, interaction model, agent model, skill model, knowledge model, and organizational model. This methodology differs from other agent-oriented methodologies in its skill and knowledge models. As good decisions and problem solutions are mainly based on adequate information, rich knowledge, and appropriate skills to use knowledge and information, these two models are of paramount importance in modeling complex problem solving and decision making. Follow the methodology, an agent-based framework for hybrid intelligent system construction used in complex problem solving and decision making was developed. The framework has several crucial characteristics that differentiate this research from others. Four important issues relating to the framework are also investigated. These cover the building of an ontology for financial investment, matchmaking in middle agents, reasoning in problem solving and decision making, and decision aggregation in MASs. The thesis demonstrates how to build a domain-specific ontology and how to access it in a MAS by building a financial ontology. It is argued that the practical performance of service provider agents has a significant impact on the matchmaking outcomes of middle agents. It is proposed to consider service provider agents\u27 track records in matchmaking. A way to provide initial values for the track records of service provider agents is also suggested. The concept of ‘reasoning with multimedia information’ is introduced, and reasoning with still image information using symbolic projection theory is proposed. How to choose suitable aggregation operations is demonstrated through financial investment application and three approaches are proposed - the stationary agent approach, the token-passing approach, and the mobile agent approach to implementing decision aggregation in MASs. Based on the framework, a prototype was built and applied to financial investment planning. This prototype consists of one serving agent, one interface agent, one decision aggregation agent, one planning agent, four decision making agents, and five service provider agents. Experiments were conducted on the prototype. The experimental results show the framework is flexible, robust, and fully workable. All agents derived from the methodology exhibit their behaviors correctly as specified

    Semantic Smart Homes: Towards Knowledge Rich Assisted Living Environments

    Get PDF
    International audienceThe complexity of the Emergency Supply Chains makes its management very difficult. Hence, we present in this article a comprehensive view of the French emergency supply chain (ESC), we propose an ad hoc relationship model between actors, and a GRAI grid-based model to initiate a new approach for controlling the ESC deficiencies, especially related to decision making. Throughout the article, we discuss the interest of the use of enterprise modelling to model the ESC. We discuss too, the characterization of the different issues related to the steering of the ESC. A literature review based on the GRAI grid model is proposed and discussed too. The GRAI method is used here because it presents the advantage of using the theory of complex systems, and it provides a dynamic model of an organization by focusing on decision-making and decisions communication

    A fuzzy dynamic bayesian network-based situation assessment approach

    Full text link
    Situation awareness (SA), a state in the mind of a human, is essential to conduct decision-making activities. It is about the perception of the elements in the environment, the comprehension of their meaning, and the projection of their status in the near future. Two decades of investigation and analysis of accidents have showed that SA was behind of many serious large-scale technological systems' accidents. This emphasizes the importance of SA support systems development for complex and dynamic environments. This paper presents a fuzzy dynamic Bayesian network-based situation assessment approach to support the operators in decision making process in hazardous situations. The approach includes a dynamic Bayesian network-based situational network to model the hazardous situations where the existence of the situations can be inferred by sensor observations through the SCADA monitoring system using a fuzzy quantizer method. In addition to generate the assessment result, a fuzzy risk estimation method is proposed to show the risk level of situations. Ultimately a hazardous environment from U.S. Chemical Safety Board investigation reports has been used to illustrate the application of proposed approach. © 2013 IEEE

    Computational Modeling of Trust Factors Using Reinforcement Learning

    Get PDF
    As machine-learning algorithms continue to expand their scope and approach more ambiguous goals, they may be required to make decisions based on data that is often incomplete, imprecise, and uncertain. The capabilities of these models must, in turn, evolve to meet the increasingly complex challenges associated with the deployment and integration of intelligent systems into modern society. Historical variability in the performance of traditional machine-learning models in dynamic environments leads to ambiguity of trust in decisions made by such algorithms. Consequently, the objective of this work is to develop a novel computational model that effectively quantifies the reliability of autonomous decision-making algorithms. The approach relies on the implementation of a neural network based reinforcement learning paradigm known as adaptive critic design to model an adaptive decision making process that is regulated by a quantitative measure of risk associated with each possible decision. Specifically, this work expands on the risk-directed exploration strategies of reinforcement learning to obtain quantitative risk factors for an automated object recognition process in the presence of imprecise data. Accordingly, this work addresses the challenge of automated risk quantification based on the confidence of the decision model and the nature of given data. Additionally, further analysis into risk directed policy development for improved object recognition is presented

    Semantic-level decentralized multi-robot decision-making using probabilistic macro-observations

    Get PDF
    Robust environment perception is essential for decision-making on robots operating in complex domains. Intelligent task execution requires principled treatment of uncertainty sources in a robot's observation model. This is important not only for low-level observations (e.g., accelerom-eter data), but also for high-level observations such as semantic object labels. This paper formalizes the concept of macro-observations in Decentralized Partially Observable Semi-Markov Decision Processes (Dec-POSMDPs), allowing scalable semantic-level multi-robot decision making. A hierarchical Bayesian approach is used to model noise statistics of low-level classifier outputs, while simultaneously allowing sharing of domain noise characteristics between classes. Classification accuracy of the proposed macro-observation scheme, called Hierarchical Bayesian Noise Inference (HBNI), is shown to exceed existing methods. The macro-observation scheme is then integrated into a Dec-POSMDP planner, with hardware experiments running onboard a team of dynamic quadrotors in a challenging domain where noise-agnostic filtering fails. To the best of our knowledge, this is the first demonstration of a real-time, convolutional neural net-based classification framework running fully onboard a team of quadrotors in a multi-robot decision-making domain.Boeing Compan
    • …
    corecore