35,568 research outputs found

    Belief Semantics of Authorization Logic

    Full text link
    Authorization logics have been used in the theory of computer security to reason about access control decisions. In this work, a formal belief semantics for authorization logics is given. The belief semantics is proved to subsume a standard Kripke semantics. The belief semantics yields a direct representation of principals' beliefs, without resorting to the technical machinery used in Kripke semantics. A proof system is given for the logic; that system is proved sound with respect to the belief and Kripke semantics. The soundness proof for the belief semantics, and for a variant of the Kripke semantics, is mechanized in Coq

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Towards defining semantic foundations for purpose-based privacy policies

    Get PDF
    We define a semantic model for purpose, based on which purpose-based privacy policies can be meaningfully expressed and enforced in a business system. The model is based on the intuition that the purpose of an action is determined by its situation among other inter-related actions. Actions and their relationships can be modeled in the form of an action graph which is based on the business processes in a system. Accordingly, a modal logic and the corresponding model checking algorithm are developed for formal expression of purpose-based policies and verifying whether a particular system complies with them. It is also shown through various examples, how various typical purpose-based policies as well as some new policy types can be expressed and checked using our model

    A modal logic for reasoning on consistency and completeness of regulations

    Get PDF
    In this paper, we deal with regulations that may exist in multi-agent systems in order to regulate agent behaviour and we discuss two properties of regulations, that is consistency and completeness. After defining what consistency and completeness mean, we propose a way to consistently complete incomplete regulations. In this contribution, we extend previous works and we consider that regulations are expressed in a first order modal deontic logic

    Procedure-modular specification and verification of temporal safety properties

    Get PDF
    This paper describes ProMoVer, a tool for fully automated procedure-modular verification of Java programs equipped with method-local and global assertions that specify safety properties of sequences of method invocations. Modularity at the procedure-level is a natural instantiation of the modular verification paradigm, where correctness of global properties is relativized on the local properties of the methods rather than on their implementations. Here, it is based on the construction of maximal models for a program model that abstracts away from program data. This approach allows global properties to be verified in the presence of code evolution, multiple method implementations (as arising from software product lines), or even unknown method implementations (as in mobile code for open platforms). ProMoVer automates a typical verification scenario for a previously developed tool set for compositional verification of control flow safety properties, and provides appropriate pre- and post-processing. Both linear-time temporal logic and finite automata are supported as formalisms for expressing local and global safety properties, allowing the user to choose a suitable format for the property at hand. Modularity is exploited by a mechanism for proof reuse that detects and minimizes the verification tasks resulting from changes in the code and the specifications. The verification task is relatively light-weight due to support for abstraction from private methods and automatic extraction of candidate specifications from method implementations. We evaluate the tool on a number of applications from the domains of Java Card and web-based application

    Modal logics are coalgebraic

    Get PDF
    Applications of modal logics are abundant in computer science, and a large number of structurally different modal logics have been successfully employed in a diverse spectrum of application contexts. Coalgebraic semantics, on the other hand, provides a uniform and encompassing view on the large variety of specific logics used in particular domains. The coalgebraic approach is generic and compositional: tools and techniques simultaneously apply to a large class of application areas and can moreover be combined in a modular way. In particular, this facilitates a pick-and-choose approach to domain specific formalisms, applicable across the entire scope of application areas, leading to generic software tools that are easier to design, to implement, and to maintain. This paper substantiates the authors' firm belief that the systematic exploitation of the coalgebraic nature of modal logic will not only have impact on the field of modal logic itself but also lead to significant progress in a number of areas within computer science, such as knowledge representation and concurrency/mobility
    • ā€¦
    corecore