26,438 research outputs found

    Lewis meets Brouwer: constructive strict implication

    Full text link
    C. I. Lewis invented modern modal logic as a theory of "strict implication". Over the classical propositional calculus one can as well work with the unary box connective. Intuitionistically, however, the strict implication has greater expressive power than the box and allows to make distinctions invisible in the ordinary syntax. In particular, the logic determined by the most popular semantics of intuitionistic K becomes a proper extension of the minimal normal logic of the binary connective. Even an extension of this minimal logic with the "strength" axiom, classically near-trivial, preserves the distinction between the binary and the unary setting. In fact, this distinction and the strong constructive strict implication itself has been also discovered by the functional programming community in their study of "arrows" as contrasted with "idioms". Our particular focus is on arithmetical interpretations of the intuitionistic strict implication in terms of preservativity in extensions of Heyting's Arithmetic.Comment: Our invited contribution to the collection "L.E.J. Brouwer, 50 years later

    Paving the Way for Temporal Grounding

    Get PDF
    In this paper we consider the problem of introducing variables in temporal logic programs under the formalism of Temporal Equilibrium Logic (TEL), an extension of Answer Set Programming (ASP) for dealing with linear-time modal operators. We provide several fundamental contributions that pave the way for the implementation of a grounding process, that is, a method that allows replacing variables by ground instances in all the possible (or better, relevant) ways

    Linear-Time Temporal Answer Set Programming

    Get PDF
    [Abstract]: In this survey, we present an overview on (Modal) Temporal Logic Programming in view of its application to Knowledge Representation and Declarative Problem Solving. The syntax of this extension of logic programs is the result of combining usual rules with temporal modal operators, as in Linear-time Temporal Logic (LTL). In the paper, we focus on the main recent results of the non-monotonic formalism called Temporal Equilibrium Logic (TEL) that is defined for the full syntax of LTL but involves a model selection criterion based on Equilibrium Logic, a well known logical characterization of Answer Set Programming (ASP). As a result, we obtain a proper extension of the stable models semantics for the general case of temporal formulas in the syntax of LTL. We recall the basic definitions for TEL and its monotonic basis, the temporal logic of Here-and-There (THT), and study the differences between finite and infinite trace length. We also provide further useful results, such as the translation into other formalisms like Quantified Equilibrium Logic and Second-order LTL, and some techniques for computing temporal stable models based on automata constructions. In the remainder of the paper, we focus on practical aspects, defining a syntactic fragment called (modal) temporal logic programs closer to ASP, and explaining how this has been exploited in the construction of the solver telingo, a temporal extension of the well-known ASP solver clingo that uses its incremental solving capabilities.Xunta de Galicia; ED431B 2019/03We are thankful to the anonymous reviewers for their thorough work and their useful suggestions that have helped to improve the paper. A special thanks goes to Mirosaw Truszczy´nski for his support in improving the quality of our paper. We are especially grateful to David Pearce, whose help and collaboration on Equilibrium Logic was the seed for a great part of the current paper. This work was partially supported by MICINN, Spain, grant PID2020-116201GB-I00, Xunta de Galicia, Spain (GPC ED431B 2019/03), R´egion Pays de la Loire, France, (projects EL4HC and etoiles montantes CTASP), European Union COST action CA-17124, and DFG grants SCHA 550/11 and 15, Germany

    On the representation of temporal knowledge

    Get PDF
    The growing interest in an adequate modelling of time in Artificial Intelligence has given rise to the research discipline of Temporal Reasoning (TR). Due to different views, different approaches towards TR such as PL1, modal logics or Allen\u27s intervall logic have been investigated. It was realized at an early stage that each of this approaches has some strong points whereas it suffers from certain drawbacks. Thus recently, a number of research activities have emerged aiming at a combination of the classical paradigms for representing time. In the first part of this paper, we present an overview of the most important approaches to the integration of temporal knowledge into logic programming. In the second part, we present the CRONOLOG temporal logic programming language which has been developed to cover the quintessence of the approaches presented before. The third part of the paper describes TRAM, which it is an extension of CRONOLOG to a temporal knowledge representation system. Using TRAM it is possible to represent knowledge depending on time and to reason about this knowledge. TRAM has been conceptually based on a combination of modal logics with Allen\u27s interval logic. We present the Extended Modal Logics (EML) which establishes the theoretical framework for TRAM. We define an operational semantics and a horizontal compilation scheme for TRAM

    Non-Markovian Agent Evolution with EVOLP

    Get PDF
    Logic Programming Update Languages were proposed as an extension of logic programming, which allow for modelling the dynamics of knowledge bases where both extensional knowledge (facts) as well as intentional knowledge (rules) may change over time due to updates, with important application Multi-Agent Systems (MAS). Despite their generality, these languages do not provide means to directly access past states of the evolving knowledge. They only allow for so-called Markovian changes i.e. changes determined entirely by the current state. This is a drawback in several situation. In this paper, after motivating the need for non-Markovian changes, we extend EVOLP -- The Logic Programming Update Language at the heart of an existing MAS -- with LTL-like temporal operators that allow referring to the history of the evolving agent. We then show that with a suitable introduction of new propositional variables it is possible to embed the extended EVOLP into the original one, thus demonstrating that EVOLP itself can already be used for non-Markovian changes. While showing how to use EVOLP for encoding non-Markovian changes, this embedding sheds light into the relationship between Logic Programming Update Languages and Modal Temporal Logics, of particular importance in MAS

    Temporal Answer Set Programming

    Get PDF
    Answer Set Programming (ASP) has become a popular way for representing different kinds of scenarios from knowledge representation in Artificial Intelligence. Frequently, these scenarios involve a temporal component which must be considered. In ASP, time is usually represented as a variable whose values are defined by an extensional predicate with a finite domain. Dealing with a finite temporal interval has some disadvantages. First, checking the existence of a plan is not possible and second, it also makes difficult to decide whether two programs are strongly equivalent. If we extend the syntax of Answer Set Programming by using temporal operators from temporal modal logics, then infinite time can be considered, so the aforementioned disadvantages can be overcome. This extension constitutes, in fact, a formalism called Temporal Equilibrium Logic, which is based on Equilibrium Logic (a logical characterisation of ASP). Although recent contributions have shown promising results, Temporal Equilibrium Logic is still a novel paradigm and there are many gaps to fill. Our goal is to keep developing this paradigm, filling those gaps and turning it into a suitable framework for temporal reasoning

    An Elementary Affine λ-Calculus with Multithreading and Side Effects

    Get PDF
    International audienceLinear logic provides a framework to control the complexity of higher-order functional programs. We present an extension of this framework to programs with multithreading and side effects focusing on the case of elementary time. Our main contributions are as follows. First, we introduce a modal call-by-value λ-calculus with multithreading and side effects. Second, we provide a combinatorial proof of termination in elementary time for the language. Third, we introduce an elementary affine type system that guarantees the standard subject reduction and progress properties. Finally, we illustrate the programming of iterative functions with side effects in the presented formalism

    Epistemic Logic Programs with World View Constraints

    Get PDF
    An epistemic logic program is a set of rules written in the language of Epistemic Specifications, an extension of the language of answer set programming that provides for more powerful introspective reasoning through the use of modal operators K and M. We propose adding a new construct to Epistemic Specifications called a world view constraint that provides a universal device for expressing global constraints in the various versions of the language. We further propose the use of subjective literals (literals preceded by K or M) in rule heads as syntactic sugar for world view constraints. Additionally, we provide an algorithm for finding the world views of such programs
    • …
    corecore