433 research outputs found

    A Survey on Passing-through Control of Multi-Robot Systems in Cluttered Environments

    Full text link
    This survey presents a comprehensive review of various methods and algorithms related to passing-through control of multi-robot systems in cluttered environments. Numerous studies have investigated this area, and we identify several avenues for enhancing existing methods. This survey describes some models of robots and commonly considered control objectives, followed by an in-depth analysis of four types of algorithms that can be employed for passing-through control: leader-follower formation control, multi-robot trajectory planning, control-based methods, and virtual tube planning and control. Furthermore, we conduct a comparative analysis of these techniques and provide some subjective and general evaluations.Comment: 18 pages, 19 figure

    Machine Learning for Unmanned Aerial System (UAS) Networking

    Get PDF
    Fueled by the advancement of 5G new radio (5G NR), rapid development has occurred in many fields. Compared with the conventional approaches, beamforming and network slicing enable 5G NR to have ten times decrease in latency, connection density, and experienced throughput than 4G long term evolution (4G LTE). These advantages pave the way for the evolution of Cyber-physical Systems (CPS) on a large scale. The reduction of consumption, the advancement of control engineering, and the simplification of Unmanned Aircraft System (UAS) enable the UAS networking deployment on a large scale to become feasible. The UAS networking can finish multiple complex missions simultaneously. However, the limitations of the conventional approaches are still a big challenge to make a trade-off between the massive management and efficient networking on a large scale. With 5G NR and machine learning, in this dissertation, my contributions can be summarized as the following: I proposed a novel Optimized Ad-hoc On-demand Distance Vector (OAODV) routing protocol to improve the throughput of Intra UAS networking. The novel routing protocol can reduce the system overhead and be efficient. To improve the security, I proposed a blockchain scheme to mitigate the malicious basestations for cellular connected UAS networking and a proof-of-traffic (PoT) to improve the efficiency of blockchain for UAS networking on a large scale. Inspired by the biological cell paradigm, I proposed the cell wall routing protocols for heterogeneous UAS networking. With 5G NR, the inter connections between UAS networking can strengthen the throughput and elasticity of UAS networking. With machine learning, the routing schedulings for intra- and inter- UAS networking can enhance the throughput of UAS networking on a large scale. The inter UAS networking can achieve the max-min throughput globally edge coloring. I leveraged the upper and lower bound to accelerate the optimization of edge coloring. This dissertation paves a way regarding UAS networking in the integration of CPS and machine learning. The UAS networking can achieve outstanding performance in a decentralized architecture. Concurrently, this dissertation gives insights into UAS networking on a large scale. These are fundamental to integrating UAS and National Aerial System (NAS), critical to aviation in the operated and unmanned fields. The dissertation provides novel approaches for the promotion of UAS networking on a large scale. The proposed approaches extend the state-of-the-art of UAS networking in a decentralized architecture. All the alterations can contribute to the establishment of UAS networking with CPS

    Design of an UAV swarm

    Get PDF
    This master thesis tries to give an overview on the general aspects involved in the design of an UAV swarm. UAV swarms are continuoulsy gaining popularity amongst researchers and UAV manufacturers, since they allow greater success rates in task accomplishing with reduced times. Appart from this, multiple UAVs cooperating between them opens a new field of missions that can only be carried in this way. All the topics explained within this master thesis will explain all the agents involved in the design of an UAV swarm, from the communication protocols between them, navigation and trajectory analysis and task allocation

    Flying mobile edge computing towards 5G and beyond: an overview on current use cases and challenges

    Get PDF
    The increasing computational capacity of multiple devices, the advent of complex applications, and data generation create new challenges of scalability, ubiquity, and seamless services to meet the most diverse network demands and requirements, such as reliability, latency, battery lifetime. For this reason, the 5th Generation (5G) network comes to mitigate the most diverse challenges inherent to the current dynamic mobile networks and their increasing data rates. Unmanned Aerial Vehicles (UAVs) have also been considered as communication relays or mobile base stations to assist mobile users with limited or no available wireless infrastructure. They can provide connections for mobile users in hard-to-reach areas, replacing damaged or overloaded ground infrastructure and working as mobile clouds, providing low but increasing computational power. However, the feasibility of a Flying Edge Computing requires special attention in terms of resource allocation techniques, cooperation with existing ground units and among multiple UAVs, coordination with user mobility, computation efficiency, collision avoidance, and recharging approaches. Thus, the cooperation among UAVs and the current terrestrial Mobile Edge Computing can be relevant in some cases once the computation power of a single UAV might be insufficient. It is important to understand the feasibility of current proposals and establish new approaches that consider the usage of multiple UAVs and recharging approaches. In this paper we discuss the challenges of a 5G extended network through the help of UAVs. The proposed multi-tier architecture employs UAVs with different mobility models, providing support to ground nodes. Moreover, the support of the UAVs as edge nodes will also be evaluated.publishe

    Automatic system supporting multicopter swarms with manual guidance

    Full text link
    [EN] Currently, there are some scenarios, such as search and rescue operations,where the deployment of manually guided swarms of UAVs can be necessary. In such cases, the pilot's commands are unknown a priori (unpredictable), meaning that the UAVs must respond in near real time to the movements of the leader UAV in order to maintain swarm consistency. In this paper we develop a protocol for the coordination of UAVs in a swarm where the swarm leader is controlled by a real pilot, and the other UAVs must follow it in real time to maintain swarm cohesion. We validate our solution using a realistic simulation software that we developed (ArduSim), testing flights with multiple numbers of UAVs and different swarm configurations. Simulation results show the validity of the proposed swarm coordination protocol, detailing the responsiveness limits of our solution, and finding the minimum distances between UAVs to avoid collisions.This work was partially supported by the "Programa Estatal de Investigation, Desarrollo e Innovation Orientada a Retos de la Sociedad, Proyecto TEC2014-52690-R", Spain, the "Universidad Laica Eloy Alfaro de Manabi," and the "Programa de Becas SENESCYT de la Republica del Ecuador."Fabra Collado, FJ.; Zamora, W.; Masanet, J.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P. (2019). Automatic system supporting multicopter swarms with manual guidance. Computers & Electrical Engineering. 74:413-428. https://doi.org/10.1016/j.compeleceng.2019.01.0264134287

    Detecting Invasive Insects with Unmanned Aerial Vehicles

    Full text link
    A key aspect to controlling and reducing the effects invasive insect species have on agriculture is to obtain knowledge about the migration patterns of these species. Current state-of-the-art methods of studying these migration patterns involve a mark-release-recapture technique, in which insects are released after being marked and researchers attempt to recapture them later. However, this approach involves a human researcher manually searching for these insects in large fields and results in very low recapture rates. In this paper, we propose an automated system for detecting released insects using an unmanned aerial vehicle. This system utilizes ultraviolet lighting technology, digital cameras, and lightweight computer vision algorithms to more quickly and accurately detect insects compared to the current state of the art. The efficiency and accuracy that this system provides will allow for a more comprehensive understanding of invasive insect species migration patterns. Our experimental results demonstrate that our system can detect real target insects in field conditions with high precision and recall rates.Comment: IEEE ICRA 2019. 7 page

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation
    • …
    corecore