182 research outputs found

    Self-organising comprehensive handover strategy for multi-tier LTE-advanced heterogeneous networks

    Get PDF
    Long term evolution (LTE)-advanced was introduced as real fourth generation (4G) with its new features and additional functions, satisfying the growing demands of quality and network coverage for the network operators' subscribers. The term muti-tier has also been recently used with respect to the heterogeneity of the network by applying the various subnetwork cooperative systems and functionalities with self-organising capabilities. Using indoor short-range low-power cellular base stations, for example, femtocells, in cooperation with existing long-range macrocells are considered as the key technical challenge of this multi-tier configuration. Furthermore, shortage of network spectrum is a major concern for network operators which forces them to spend additional attentions to overcome the degradation in performance and quality of services in 4G HetNets. This study investigates handover between the different layers of a heterogeneous LTE-advanced system, as a critical attribute to plan the best way of interactive coordination within the network for the proposed HetNet. The proposed comprehensive handover algorithm takes multiple factors in both handover sensing and decision stages, based on signal power reception, resource availability and handover optimisation, as well as prioritisation among macro and femto stations, to obtain maximum signal quality while avoiding unnecessary handovers

    Mobile Networks

    Get PDF
    The growth in the use of mobile networks has come mainly with the third generation systems and voice traffic. With the current third generation and the arrival of the 4G, the number of mobile users in the world will exceed the number of landlines users. Audio and video streaming have had a significant increase, parallel to the requirements of bandwidth and quality of service demanded by those applications. Mobile networks require that the applications and protocols that have worked successfully in fixed networks can be used with the same level of quality in mobile scenarios. Until the third generation of mobile networks, the need to ensure reliable handovers was still an important issue. On the eve of a new generation of access networks (4G) and increased connectivity between networks of different characteristics commonly called hybrid (satellite, ad-hoc, sensors, wired, WIMAX, LAN, etc.), it is necessary to transfer mechanisms of mobility to future generations of networks. In order to achieve this, it is essential to carry out a comprehensive evaluation of the performance of current protocols and the diverse topologies to suit the new mobility conditions

    Survey and taxonomy of clustering algorithms in 5G

    Get PDF
    The large-scale deployment of fifth generation (5G) is expected to produce a massive amount of data with high variability due to ultra-densification and the rapid increase in a heterogeneous range of applications and services (e.g., virtual reality, augmented reality, and driver-less vehicles), and network devices (e.g., smart gadgets and sensors). Clustering organizes network topology by segregating nodes with similar interests or behaviors in a network into logical groups in order to achieve network-level and cluster-level enhancements, particularly cluster stability, load balancing, social awareness, fairness, and quality of service. Clustering has been investigated to support mobile user equipment (UE) in access networks, whereby UEs form clusters themselves and may connect to BSs. In this paper, we present a comprehensive survey of the research work of clustering schemes proposed for various scenarios in 5G networks and highlight various aspects of clustering schemes, including objectives, challenges, metrics, characteristics, performance measures. Furthermore, we present open issues of clustering in 5G
    • …
    corecore