8,346 research outputs found

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Towards the deployment of software defined networks over satellites - an in-laboratory demonstration for GEO satellite services

    Get PDF
    Traditional satellite communications missions are based on artificial satellites that can communicate with ground stations. This type of network provides wide-area coverage as well as resilient communications. Satellite systems are expected to be merged with the introduction of 5G/6G mobile systems to offer seamless connection and ubiquitous coverage for users worldwide. SDN/NFV are two of the most important enabling technologies for deploying new 5G/6G mobile network architectures, and they are widely used in telecommunications to deliver different services. Its method is based on network softwarization, which abstracts the physical infrastructure by separating the functionality of the hardware. Furthermore, using SDN, it is possible to reconfigure the network in flexible topologies that adapt to the performance necessary at any given time, thereby maximizing resources and lowering costs. SDN/NFV, on the other hand, relies on a strong and continuous network layer to construct a control plane and deploy VNF. However, establishing a stable link is difficult in constellations of several LEO/MEO satellites. TALENT is a software platform created with the purpose of supplying satellite and ground connection by coordinating satellite and terrestrial systems from a single location, developed under the SaTG5 project that defined the integration of satellite solutions for 5G. Regardless of these solutions, a robust testbed is required to help in the discovery of novel protocols for delivering and orchestrating network services over satellite networks that take dynamic network architecture on satellite constellations into account. This thesis addresses the lack of a testbed for deploying VNF via a satellite network, as well as the orchestration and deployment of VNF across various satellite constellations. Its main contribution is an update to TALENT to allow it to work with newer Open Source MANO versions, and a testbed for deploying a VNF across a simulated satellite network based on the OpenSand satellite simulation tool.Objectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructur

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    The future is coming : research on maritime communication technology for realization of intelligent ship and its impacts on future maritime management

    Get PDF

    Full Issue 8.3

    Get PDF

    Satellite technology : reinforcement of computer data transmission technology : implications for the maritime world communications, data transfer and maritime education

    Get PDF
    This dissertation is a study of the impact of data transmission via satellite on the maritime world of communication, data transfer and education. The aim of the study is to understand the technological reinforcement of the maritime industry and the changes taking place in it. With the avalanche of changes that are taking place in the field of information technology, they can be used to facilitate the shipping industry. This dissertation assists in understanding some of the technological evolution of satellite technology and data communication and in the needs of the maritime industry as well. This dissertation describes satellite technology and data communication and analyses the data communication software (protocols), compression software, and other application software combinations with maritime communication system provided to improve ship operation and management for safety. The conclusion and recommendations chapter examines the implications of the technology changes on developing countries, the need to be harmonised in training and education for the maritime industry, maritime communication systems and the equipment, policy of shipping companies and communication costs

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin
    corecore