6,921 research outputs found

    Mobile P2Ping: A Super-Peer based Structured P2P System Using a Fleet of City Buses

    Get PDF
    Recently, researchers have introduced the notion of super-peers to improve signaling efficiency as well as lookup performance of peer-to-peer (P2P) systems. In a separate development, recent works on applications of mobile ad hoc networks (MANET) have seen several proposals on utilizing mobile fleets such as city buses to deploy a mobile backbone infrastructure for communication and Internet access in a metropolitan environment. This paper further explores the possibility of deploying P2P applications such as content sharing and distributed computing, over this mobile backbone infrastructure. Specifically, we study how city buses may be deployed as a mobile system of super-peers. We discuss the main motivations behind our proposal, and outline in detail the design of a super-peer based structured P2P system using a fleet of city buses.Singapore-MIT Alliance (SMA

    Transport and Older People: Integrating Transport Planning Tools with User Needs

    Get PDF
    This study was funded through a pump-priming grant from the Strategic Promotion of Ageing Research Capacity (SPARC) programme. The purpose of the project was to bring together transport and public health research in order to demonstrate how the involvement of older people can help improve tools for transport planning. The study was unique in that it brought together public health and transport planning and engineering with older people to consider how services can be more responsive to older people’s transport needs. The project had five research objectives: 1. To investigate how accessibility problems impact on older people’s independence 2. To determine the extent to which currently available data sources and modelling tools reflect older people’s stated accessibility needs 3. To understand how the gap between expected and perceived accessibility problems varies across different categories of older people 4. To pilot techniques that could be applied to provide a more robust measure of accessibility for older people. 5. To build new research capacity across disciplines to develop a national focus on the interactions between ageing and transport planning. The methods were determined on the basis of ‘appropriate tools with maximum output’. Focus group interviews were selected as a useful tool for reaching a large number of older people within a limited time span, for providing an arena for discussion and debate about a topical subject and for generating ideas for improving transport planning. Following the interviews accompanied walks were undertaken with older people in a range of road environments and traffic situations. The purpose of these walks was to observe and explore the way older people interact with their environment. Data from the focus group interviews and the observations were compared with the outputs from an accessibility planning tool used by local authorities to plan accessible and acceptable transport routes (Accessionℱ). The purpose of this exercise was to investigate whether or not such tools are able to take into account the varying needs of older people. The study was undertaken over eight months. Eighty one older people living in the Leeds district took part in the focus groups. They covered a broad range of mobility levels and used a variety of transport types, as such a reasonably rounded perspective on the issues concerned was offered. In addition six walks were undertaken with older people in their community

    A lightweight distributed super peer election algorithm for unstructured dynamic P2P systems

    Get PDF
    Dissertação apresentada na Faculdade de CiĂȘncias e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia ElectrotĂ©cnica e de ComputadoresNowadays with the current growth of information exchange, and the increasing mobility of devices, it becomes essential to use technology to monitor this development. For that P2P networks are used, the exchange of information between agencies is facilitated, these now being applied in mobile networks, including MANETs, where they have special features such as the fact that they are semi-centralized, where it takes peers more ability to make a greater role in the network. But those peer with more capacity, which are used in the optimization of various parameters of these systems, such as optimization\to research, are difficult to identify due to the fact that the network does not have a fixed topology, be constantly changing, (we like to go online and offline, to change position, etc.) and not to allow the exchange of large messages. To this end, this thesis proposes a distributed election algorithm of us greater capacity among several possible goals, enhance research in the network. This includes distinguishing characteristics, such as election without global knowledge network, minimal exchange of messages, distributed decision made without dependence on us and the possibility of influencing the election outcome as the special needs of the network

    Spartan Daily December 3, 2012

    Get PDF
    Volume 139, Issue 48https://scholarworks.sjsu.edu/spartandaily/1364/thumbnail.jp

    Logical Networks: Self-organizing Overlay Networks and Overlay Computing Systems: [EPI Proposal V2.0]

    Get PDF
    Contents 1 Team on March 15, 2010 ...........................................42 Capsule ...........................................52.1 Slogan and logo............................................ 5 2.2 One equation fits all and keywords ................................. 6 2.3 How to read this proposal ...................................... 63 Vertical view ...........................................63.1 Panorama............................................... 6 3.2 General definitions .......................................... 8 3.3 Virtual organization ......................................... 9 3.4 Execution model ........................................... 94 Horizontal view ...............................................94.1 Panorama............................................... 94.2 Arigatoni overlay network ...................................... 10 4.2.1 Arigatoni units........................................ 10 4.2.2 Virtual organizations in Arigatoni ............................. 12 4.2.3 Resource discovery protocol (RDP)............................. 12 4.2.4 Virtual Intermittent Protocol (VIP) ............................ 13 4.2.5 iNeu: librairies for network computing........................... 144.3 Babelchord, a DHT’s tower ..................................... 144.4 Synapse,interconnecting heterogeneous overlay networks. . . . . . . . . . . . . . . . . . . . . 154.5 Cross-layer overlay design for geo-sensible applications . . . . . . . . . . . . . . . . . . . . . . 175 Diagonal view...............................................175.1 Panorama............................................... 17 5.2 Trees versus graphs: a conflict without a cause .......................... 17 5.3 Fault tolerance ............................................ 18 5.4 Parametricity and universality ................................... 18 5.5 Social networking........................................... 19 5.6 Choice of development platform................................... 19 5.7 Quality metrics for an overlay computer .............................. 19 5.8 Trust and security .......................................... 20 5.9 New models of computations .................................... 216 Topics and time line...............................................226.1 Panorama............................................... 226.2 Topicview............................................... 22 6.2.1 Vertical issues......................................... 22 6.2.2 Horizontal issues ....................................... 22 6.2.3 Diagonalissues........................................ 236.3 Timeview............................................... 23 6.3.1 Short-term .......................................... 23 6.3.2 Medium-term......................................... 24 6.3.3 Long-term........................................... 247 Potential application domains ...........................................247.1 Panorama............................................... 24 7.2 P2P social networks ......................................... 25 7.3 Overlay computer for mobile ad hoc networks........................... 25 7.4 OverStic: the mesh overlay network in Sophia Antipolis ..................... 27 7.5 Reducing the Digital Divide..................................... 28 7.6 GRID applications: scenario for seismic monitoring ....................... 29 7.7 Interconnection of heterogeneous overlay networks ........................ 30 7.8 Toward an overlay network of things (RFID) ........................... 318 Software ...........................................328.1 Panorama............................................... 328.2 Prototype software.......................................... 32 8.2.1 Arigatoni simulator ..................................... 32 8.2.2 Ariwheels........................................... 32 8.2.3 BabelChord.......................................... 36 8.2.4 Synapse............................................ 37 8.2.5 Open-Synapse Client..................................... 38 8.2.6 myTransport Gui....................................... 39 8.2.7 CarPal: a P2P carpooling service ............................. 39 8.2.8 Husky interpreter....................................... 408.3 Potential software .......................................... 41 8.3.1 myMed (in french), see http://www-sop.inria.fr/mymed . . . . . . . . . . . . . . . . 419 Contracts...........................................439.1 INTERREG Alcotra: myMed,2010-2013.............................. 43 9.2 COLOR:JMED,2010 ........................................ 43 9.3 FP6 FET GlobalComputing: IST AEOLUS, 2006-2010 ..................... 43 9.4 JET TEMPUS DEUKS, 2007-2009................................. 4410 Collaborations ...........................................4411 Self assessment ...........................................4411.1 Trivia ................................................. 45 11.2 Conclusions.............................................. 45We propose foundations for generic overlay networks and overlay computing systems. Such overlays are built over a large number of distributed computational agents, virtually organized in colonies or virtual organizations, and ruled by a leader (broker) who is elected democratically (vox populi, vox dei) or imposed by system administrators (primus inter pares). Every agent asks the broker to log in the colony by declaring the resources that can be offered (with variable guarantees). Once logged in, an agent can ask the broker for other resources. Colonies can recursively be considered as evolved agents who can log in an outermost colony governed by another super-leader. Communications and routing intra-colonies goes through a broker-2-broker PKI-based negotiation. Every broker routes intra- and inter- service requests by filtering its resource routing table, and then forwarding the request first inside its colony, and second outside, via the proper super-leader (thus applying an endogenous-first-estrogen- last strategy). Theoretically, queries are formulé in first-order logic equipped with a small program used to orchestrate and synchronize atomic formulé (atomic services). When the client agent receives notification of all (or part of) the requested resources, then the real resource exchange is performed directly by the server(s) agents, without any further mediation of the broker, in a pure peer-to-peer fashion. The proposed overlay promotes an intermittent participation in the colony, since peers can appear, disappear, and organize themselves dynamically. This implies that the routing process may lead to failures, because some agents have quit or are temporarily unavailable, or they were logged out manu militari by the broker due to their poor performance or greediness. We aim to design, validate through simulation, and implement these foundations in an overlay network computer system. (From [Liquori-Cosnard TGC-07 paper])

    Interactive Food and Beverage Marketing: Targeting Children and Youth in the Digital Age

    Get PDF
    Looks at the practices of food and beverage industry marketers in reaching youth via digital videos, cell phones, interactive games and social networking sites. Recommends imposing governmental regulations on marketing to children and adolescents

    On the buses: a mixed-method evaluation of the impact of free bus travel for young people on the public health

    Get PDF
    Background In September 2005 London introduced a policy granting young people aged  60 years. An increase in assaults largely preceded the scheme. Qualitative data suggested that the scheme increased opportunities for independent travel, social inclusion, and a sense of belonging and that it ‘normalised’ bus travel. The monetised benefits of the scheme substantially outweighed the costs, providing what the Department for Transport (DfT) considers ‘high’ value for money. Conclusion The free bus travel scheme for young people appears to have encouraged their greater use of bus transport for short trips without significant impact on their overall active travel. There was qualitative evidence for benefits on social determinants of health, such as normalisation of bus travel, greater social inclusion and opportunities for independent travel. In the context of a good bus service, universal free bus travel for young people appears to be a cost-effective contributor to social inclusion and, potentially, to increasing sustainable transport in the long term. Further research is needed on the effects of both active and other travel modes on the determinants of health; the factors that influence maintenance of travel mode change; travel as ‘social practice’; the impact of driving license changes on injury rates for young adults and the value of a statistical life for young people

    Assessing the Efficiency of Mass Transit Systems in the United States

    Get PDF
    Frustrated with increased parking problems, unstable gasoline prices, and stifling traffic congestion, a growing number of metropolitan city dwellers consider utilizing the mass transit system. Reflecting this sentiment, a ridership of the mass transit system across the United States has been on the rise for the past several years. A growing demand for the mass transit system, however, necessitates the expansion of service offerings, the improvement of basic infrastructure/routes, and the additional employment of mass transit workers, including drivers and maintenance crews. Such a need requires the optimal allocation of financial and human resources to the mass transit system in times of shrinking budgets and government downsizing. Thus, the public transit authority is faced with the dilemma of “doing more with less.” That is to say, the public transit authority needs to develop a “lean” strategy which can maximize transit services with the minimum expenses. To help the public transit authority develop such a lean strategy, this report identifies the best-in-class practices in the U.S. transit service sector and proposes transit policy guidelines that can best exploit lean principles built upon best-in-class practices

    City of Ideas: Reinventing Boston's Innovation Economy: The Boston Indicators Report 2012

    Get PDF
    Analyzes indicators of the city's economic, social, and technological progress; potential for creating innovative solutions to global and national challenges; and complexities, disparities, and weaknesses in the indicators and innovation economy paradigm
    • 

    corecore