1,534 research outputs found

    A mobile sensing approach to stress detection and memory activation for public bus drivers

    Get PDF
    Experience of daily stress among bus drivers has shown to affect physical and psychological health, and can impact driving behavior and overall road safety. Although previous research consistently supports these findings, little attention has been dedicated to the design of a stress detection method able to synchronize physiologic and psychological stress responses of public bus drivers in their day-to-day routine work. To overcome this limitation, we propose a mobile sensing approach to detect georeferenced stress responses and facilitate memory recall of the stressful situations. Data was collected among public bus drivers in the city of Porto, Portugal (145 hours, 36 bus drivers, +2300 km) and results supported the validation of our approach among this population and allowed us to determine specific stressor categories within certain areas of the city. Furthermore, data collected through-out the city allowed us to produce a citywide ā€stress mapā€ that can be used for spotting areas in need of local authority intervention. The enriching findings suggest that our system can be a promising tool to support applied occupational health interventions for public bus drivers and guide authoritiesā€™ interventions to improve these aspects in ā€futureā€ cities

    Analysis and design of individual information systems to support health behavior change

    Get PDF
    As a wide-ranging socio-technical transformation, the digitalization has significantly influenced the world, bringing opportunities and challenges to our lives. Despite numerous benefits like the possibility to stay connected with people around the world, the increasing dispersion and use of digital technologies and media (DTM) pose risks to individualsā€™ well-being and health. Rising demands emerging from the digital world have been linked to digital stress, that is, stress directly or indirectly resulting from DTM (Ayyagari et al. 2011; Ragu-Nathan et al. 2008; Tarafdar et al. 2019; Weil and Rosen 1997), potentially intensifying individualsā€™ overall exposure to stress. Individuals experiencing this adverse consequence of digitalization are at elevated risk of developing severe mental health impairments (Alhassan et al. 2018; Haidt and Allen 2020; Scott et al. 2017), which is why various scholars emphasize that research should place a stronger focus on analyzing and shaping the role of the individual in a digital world, pursuing instrumental as well as humanistic objectives (Ameen et al. 2021; Baskerville 2011b). Information Systems (IS) research has long placed emphasis on the use of information and communication technology (ICT) in organizations, viewing an information system as the socio-technical system that emerges from individualsā€™ interaction with DTM in organizations. However, socio-technical information systems, as the essence of the IS discipline (Lee 2004; Sarker et al. 2019), are also present in different social contexts from private life. Acknowledging the increasing private use of DTM, such as smartphones and social networks, IS scholars have recently intensified their efforts to understand the human factor of IS (Avison and Fitzgerald 1991; Turel et al. 2021). A framework recently proposed by Matt et al. (2019) suggests three research angles: analyzing individualsā€™ behavior associated with their DTM use, analyzing what consequences arise from their DTM use behavior, and designing new technologies that promote positive or mitigate negative effects of individualsā€™ DTM use. Various recent studies suggest that individualsā€™ behavior seems to be an important lever influencing the outcomes of their DTM use (Salo et al. 2017; Salo et al. 2020; Weinstein et al. 2016). Therefore, this dissertation aims to contribute to IS research targeting the facilitation of a healthy DTM use behavior. It explores the use behavior, consequences, and design of DTM for individuals' use with the objective to deliver humanistic value by increasing individuals' health through supporting a behavior change related to their DTM use. The dissertation combines behavioral science and design science perspectives and applies pluralistic methodological approaches from qualitative (e.g., interviews, prototyping) and quantitative research (e.g., survey research, field studies), including mixed-methods approaches mixing both. Following the framework from Matt et al. (2019), the dissertation takes three perspectives therein: analyzing individualsā€™ behavior, analyzing individualsā€™ responses to consequences of DTM use, and designing information systems assisting DTM users. First, the dissertation presents new descriptive knowledge on individualsā€™ behavior related to their use of DTM. Specifically, it investigates how individuals behave when interacting with DTM, why they behave the way they do, and how their behavior can be influenced. Today, a variety of digital workplace technologies offer employees different ways of pursuing their goals or performing their tasks (Kƶffer 2015). As a result, individuals exhibit different behaviors when interacting with these technologies. The dissertation analyzes what interactional roles DTM users can take at the digital workplace and what may influence their behavior. It uses a mixed-methods approach and combines a quantitative study building on trace data from a popular digital workplace suite and qualitative interviews with users of this digital workplace suite. The empirical analysis yields eight user roles that advance the understanding of usersā€™ behavior at the digital workplace and first insights into what factors may influence this behavior. A second study adds another perspective and investigates how habitual behavior can be changed by means of DTM design elements. Real-time feedback has been discussed as a promising way to do so (Schibuola et al. 2016; Weinmann et al. 2016). In a field experiment, employees working at the digital workplace are provided with an external display that presents real-time feedback on their officeā€™s indoor environmental quality. The experiment examines if and to what extent the feedback influences their ventilation behavior to understand the effect of feedback as a means of influencing individualsā€™ behavior. The results suggest that real-time feedback can effectively alter individualsā€™ behavior, yet the feedbackā€™s effectiveness reduces over time, possibly as a result of habituation to the feedback. Second, the dissertation presents new descriptive and prescriptive knowledge on individualsā€™ ways to mitigate adverse consequences arising from the digitalization of individuals. A frequently discussed consequence that digitalization has on individuals is digital stress. Although research efforts strive to determine what measures individuals can take to effectively cope with digital stress (Salo et al. 2017; Salo et al. 2020; Weinert 2018), further understanding of individualsā€™ coping behavior is needed (Weinert 2018). A group at high risk of suffering from the adverse effects of digital stress is adolescents because they grow up using DTM daily and are still developing their identity, acquiring mental strength, and adopting essential social skills. To facilitate a healthy DTM use, the dissertation explores what strategies adolescents use to cope with the demands of their DTM use. Combining a qualitative and a quantitative study, it presents 30 coping responses used by adolescents, develops five factors underlying adolescentsā€™ activation of coping responses, and identifies gender- and age-related differences in their coping behavior. Third, the dissertation presents new prescriptive knowledge on the design of individual information systems supporting individuals in understanding and mitigating their perceived stress. Facilitated by the sensing capabilities of modern mobile devices, it explores the design and development of mobile systems that assess stress and support individuals in coping with stress by initiating a change of stress-related behavior. Since there is currently limited understanding of how to develop such systems, this dissertation explores various facets of their design and development. As a first step, it presents the development of a prototype aiming for life-integrated stress assessment, that is, the mobile sensor-based assessment of an individualā€™s stress without interfering with their daily routines. Data collected with the prototype yields a stress model relating sensor data to individualsā€™ perception of stress. To deliver a more generalized perspective on mobile stress assessment, the dissertation further presents a literature- and experience-based design theory comprising a design blueprint, design requirements, design principles, design features, and a discussion of potentially required trade-offs. Mobile stress assessment may be used for the development of mobile coping assistants. Aiming to assist individuals in effectively coping with stress and preventing future stress, a mobile coping assistant should recommend adequate coping strategies to the stressed individual in real-time or execute targeted actions within a defined scope of action automatically. While the implementation of a mobile coping assistant is yet up to future research, the dissertation presents an abstract design and algorithm for selecting appropriate coping strategies. To sum up, this dissertation contributes new knowledge on the digitalization of individuals to the IS knowledge bases, expanding both descriptive and prescriptive knowledge. Through the combination of diverse methodological approaches, it delivers knowledge on individualsā€™ behavior when using DTM, on the mitigation of consequences that may arise from individualsā€™ use of DTM, and on the design of individual information systems with the goal of facilitating a behavior change, specifically, regarding individualsā€™ coping with stress. Overall, the research contained in this dissertation may promote the development of digital assistants that support individualsā€™ in adopting a healthy DTM use behavior and thereby contribute to shaping a socio-technical environment that creates more benefit than harm for all individuals

    Managing emergency situations in the smart city: The smart signal

    Get PDF
    In a city there are numerous items, many of them unnoticed but essential; this is the case of the signals. Signals are considered objects with reduced technological interest, but in this paper we prove that making them smart and integrating in the IoT (Internet of Things) could be a relevant contribution to the Smart City. This paper presents the concept of Smart Signal, as a device conscious of its context, with communication skills, able to offer the best message to the user, and as a ubiquitous element that contributes with information to the city. We present the design considerations and a real implementation and validation of the system in one of the most challenging environments that may exist in a city: a tunnel. The main advantages of the Smart Signal are the improvement of the actual functionality of the signal providing new interaction capabilities with users and a new sensory mechanism of the Smart City

    Ubiquitous Technologies for Emotion Recognition

    Get PDF
    Emotions play a very important role in how we think and behave. As such, the emotions we feel every day can compel us to act and influence the decisions and plans we make about our lives. Being able to measure, analyze, and better comprehend how or why our emotions may change is thus of much relevance to understand human behavior and its consequences. Despite the great efforts made in the past in the study of human emotions, it is only now, with the advent of wearable, mobile, and ubiquitous technologies, that we can aim to sense and recognize emotions, continuously and in real time. This book brings together the latest experiences, findings, and developments regarding ubiquitous sensing, modeling, and the recognition of human emotions
    • ā€¦
    corecore