10,563 research outputs found

    IT-Supported Management of Mass Casualty Incidents: The e-Triage Project

    Get PDF
    Voice, analogue mobile radio, and paper have been successfully used for decades for coordination of emergencies and disasters, but although being simple and robust this approach cannot keep pace with today’s requirements any more. Emerging and established digital communication standards open the door to new applications and services, but the expected benefit needs to be carefully evaluated against robustness, interoperability, and user-friendliness. This paper describes a framework for IT-supported management of mass casualty incidents, which is currently under implementation and study. The four pillars of the concept are handheld devices for use both in daily rescue operations and in disasters, autonomous satellite-based communication infrastructure, a distributed database concept for maximal availability, and psychological acceptance research

    Framework for Development Triages through Mobile Applications

    Get PDF
    The emergency triage is being implemented due to the congestion of the emergency services, for several reasons, such as: easy access to the patient, demanding an immediate diagnostic an medical aid, prioritizing severely ill patients rather than patients with minor problems that make improper use of the emergency areas. The objective is building a system, integrated to the main system of health organization, for management of emergency triage. To do this, we have analysed and developed a system which allows us to evaluate patients through a mobile application. Results suggest that the integration of emergency triage to mobile application, helps to improve and optimize resource management and decrease the response time. In conclusion, this system optimizes the resources implemented as well as an increase of customer satisfaction

    Evaluation of medical response in disaster preparedness : with special reference to full-scale exercises

    Get PDF
    Background: Disaster exercises and simulations serves as teaching and training tool for improving medical response in disaster preparedness. Rapid and effective medical response in major incidents is known as a “key phase” to optimise resources, and this requires that management systems have an “all hazards” approach. Decision-making at all levels of management is based on available information and involves allocation of medical resources and triage decisions. Aim: The overall aim of this thesis was to increase our knowledge of the impact of quantitative evaluation of medical response on disaster preparedness. The specific aims were: to increase the ability to learn from full-scale exercises by applying quality indicators at two levels of command and control (I, II); to identify key indicators essential for initial disaster medical response registration (III); to explore ambulance staff attitudes towards practising triage tagging (IV); and to increase our knowledge of the applicability of a technical support system and its potential to provide real-time, overall situation awareness available to those overseeing the medical management of the operation. Methods: Study I, II and V were observational studies based on data collections from full-scale exercises. Templates with measurable performance indicators for evaluation of command and control were used in Study I and II and the same performance indicators combined with outcome indicators was also included in Study II. A consensus method, the Delphi technique, with 30 experts was used in Study III. Study IV used mixed methods, a pre-and post web survey answered by ambulance nurses and physicians (n=57 respectively 57) before and after a time limited strategy with triage tags and three focus groups interviews comprising 21 ambulance nurses and emergency medical technicians. Study V used major two incidents simulations to test the applicability of Radio Frequency Identification (RFID tags) technology and compare it with traditionally paper-based triage tags (n= 20 respectively 20). The quantitative data were analysed using descriptive statistics, and content analysis was used for the qualitative data. Results: The evaluation model exposed several problems occurring in the initial decision-making process that were repeatedly observed (I, II). These results in study II also demonstrated to have a major impact on patient outcome.Out of 17 severely injured patients five respectively seven were at risk for preventable death. A total of 97 statements were generated, of these 77 statements reached experts consensus, and 20 did not (III). Ambulance staffs believe in the usefulness of standardised triage methods, but the sparse application of triage tags at the scene indicates that the tags are not used frequently. Infrequent use in daily practice prevents participants from feeling confident with the triage tool (IV).The Radio Frequency Identification system improved situational awareness in disaster management. Triage information was available at least one hour earlier compared to a paper-based triage system (V). Conclusions: The presented evaluation model can be used in an objective, systematic and reproducible way to evaluate complex medical responses, which is a prerequisite for quality assurance, identification of problems, and the development of disaster preparedness

    PICT-DPA: A Quality-Compliance Data Processing Architecture to Improve the Performance of Integrated Emergency Care Clinical Decision Support System

    Get PDF
    Emergency Care System (ECS) is a critical component of health care systems by providing acute resuscitation and life-saving care. As a time-sensitive care operation system, any delay and mistake in the decision-making of these EC functions can create additional risks of adverse events and clinical incidents. The Emergency Care Clinical Decision Support System (EC-CDSS) has proven to improve the quality of the aforementioned EC functions. However, the literature is scarce on how to implement and evaluate the EC-CDSS with regard to the improvement of PHOs, which is the ultimate goal of ECS. The reasons are twofold: 1) lack of clear connections between the implementation of EC-CDSS and PHOs because of unknown quality attributes; and 2) lack of clear identification of stakeholders and their decision processes. Both lead to the lack of a data processing architecture for an integrated EC-CDSS that can fulfill all quality attributes while satisfying all stakeholders’ information needs with the goal of improving PHOs. This dissertation identified quality attributes (PICT: Performance of the decision support, Interoperability, Cost, and Timeliness) and stakeholders through a systematic literature review and designed a new data processing architecture of EC-CDSS, called PICT-DPA, through design science research. The PICT-DPA was evaluated by a prototype of integrated PICT-DPA EC-CDSS, called PICTEDS, and a semi-structured user interview. The evaluation results demonstrated that the PICT-DPA is able to improve the quality attributes of EC-CDSS while satisfying stakeholders’ information needs. This dissertation made theoretical contributions to the identification of quality attributes (with related metrics) and stakeholders of EC-CDSS and the PICT Quality Attribute model that explains how EC-CDSSs may improve PHOs through the relationships between each quality attribute and PHOs. This dissertation also made practical contributions on how quality attributes with metrics and variable stakeholders could be able to guide the design, implementation, and evaluation of any EC-CDSS and how the data processing architecture is general enough to guide the design of other decision support systems with requirements of the similar quality attributes
    • …
    corecore