12,427 research outputs found

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Genetic algorithms for satellite scheduling problems

    Get PDF
    Recently there has been a growing interest in mission operations scheduling problem. The problem, in a variety of formulations, arises in management of satellite/space missions requiring efficient allocation of user requests to make possible the communication between operations teams and spacecraft systems. Not only large space agencies, such as ESA (European Space Agency) and NASA, but also smaller research institutions and universities can establish nowadays their satellite mission, and thus need intelligent systems to automate the allocation of ground station services to space missions. In this paper, we present some relevant formulations of the satellite scheduling viewed as a family of problems and identify various forms of optimization objectives. The main complexities, due highly constrained nature, windows accessibility and visibility, multi-objectives and conflicting objectives are examined. Then, we discuss the resolution of the problem through different heuristic methods. In particular, we focus on the version of ground station scheduling, for which we present computational results obtained with Genetic Algorithms using the STK simulation toolkit.Peer ReviewedPostprint (published version

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    Multicast Routing Algorithms and Failure Analyses for Low Earth Orbit Satellite Communication Networks

    Get PDF
    In the rapidly changing environment of mobile communications, the importance of the mobile satellite (e,g,, low earth orbit satellites (LEOsats)) networks will increase due to their global visibility and connection. Multicasting is an effective communication method in terms of frequency spectrum usage for a LEO network. It is devised to provide lower network traffic (i,e,, one-to-many transmissions). This research examines the system performance of two dissimilar terrestrially-based multicasting protocols: the Distance Vector Multicast Routing Protocol (DVMRP) and the On Demand Multicast Routing Protocol (ODMRP). These two protocols are simulated in large group membership density and in the presence of satellite failures. Two different algorithms are developed and used to select critical satellites for degrading a LEO network constellation. The simulation results show that the ODMRP protocol successfully reconfigured routes in large group membership density areas and in satellite failure conditions. Results also show that the ODMRP provided reliable packet delivery. However, ODMRP showed an enormous end-to-end delay in severe satellite failure conditions. This result is attributable to the delayed route refreshing procedure of ODMRP. In contrast, the DVMRP suffered from broken routes and complexity in the large group membership density and in satellite failure conditions. It had a smaller packet delivery ratio than the ODMRP (approximately 85,5% versus 98,9% for the 80 user case). The DVMRP showed scalable and stable end-to-end delay under multiple failed satellite conditions. The large group membership density and the multiple satellite failure conditions provide a more complete assessment for these two protocols

    Report of the panel on international programs

    Get PDF
    The panel recommends that NASA participate and take an active role in the continuous monitoring of existing regional networks, the realization of high resolution geopotential and topographic missions, the establishment of interconnection of the reference frames as defined by different space techniques, the development and implementation of automation for all ground-to-space observing systems, calibration and validation experiments for measuring techniques and data, the establishment of international space-based networks for real-time transmission of high density space data in standardized formats, tracking and support for non-NASA missions, and the extension of state-of-the art observing and analysis techniques to developing nations

    Satellite provided fixed communications services: A forecast of potential domestic demand through the year 2000: Volume 2: Main text

    Get PDF
    Potential satellite-provided fixed communications services, baseline forecasts, net long haul forecasts, cost analysis, net addressable forecasts, capacity requirements, and satellite system market development are considered

    Enforcement and Spectrum Sharing: Case Studies of Federal-Commercial Sharing

    Get PDF
    To promote economic growth and unleash the potential of wireless broadband, there is a need to introduce more spectrally efficient technologies and spectrum management regimes. That led to an environment where commercial wireless broadband need to share spectrum with the federal and non-federal operations. Implementing sharing regimes on a non-opportunistic basis means that sharing agreements must be implemented. To have meaning, those agreements must be enforceable.\ud \ud With the significant exception of license-free wireless systems, commercial wireless services are based on exclusive use. With the policy change facilitating spectrum sharing, it becomes necessary to consider how sharing might take place in practice. Beyond the technical aspects of sharing, that must be resolved lie questions about how usage rights are appropriately determined and enforced. This paper is reasoning about enforcement in a particular spectrum bands (1695-1710 MHz and 3.5 GHz) that are currently being proposed for sharing between commercial services and incumbent spectrum users in the US. We examine three enforcement approaches, exclusion zones, protection zones and pure ex post and consider their implications in terms of cost elements, opportunity cost, and their adaptability
    corecore