59,857 research outputs found

    Bayesian shrinkage in mixture-of-experts models: identifying robust determinants of class membership

    Get PDF
    A method for implicit variable selection in mixture-of-experts frameworks is proposed. We introduce a prior structure where information is taken from a set of independent covariates. Robust class membership predictors are identified using a normal gamma prior. The resulting model setup is used in a finite mixture of Bernoulli distributions to find homogenous clusters of women in Mozambique based on their information sources on HIV. Fully Bayesian inference is carried out via the implementation of a Gibbs sampler

    Context Embedding Networks

    Get PDF
    Low dimensional embeddings that capture the main variations of interest in collections of data are important for many applications. One way to construct these embeddings is to acquire estimates of similarity from the crowd. However, similarity is a multi-dimensional concept that varies from individual to individual. Existing models for learning embeddings from the crowd typically make simplifying assumptions such as all individuals estimate similarity using the same criteria, the list of criteria is known in advance, or that the crowd workers are not influenced by the data that they see. To overcome these limitations we introduce Context Embedding Networks (CENs). In addition to learning interpretable embeddings from images, CENs also model worker biases for different attributes along with the visual context i.e. the visual attributes highlighted by a set of images. Experiments on two noisy crowd annotated datasets show that modeling both worker bias and visual context results in more interpretable embeddings compared to existing approaches.Comment: CVPR 2018 spotligh

    {iFair}: {L}earning Individually Fair Data Representations for Algorithmic Decision Making

    Get PDF
    People are rated and ranked, towards algorithmic decision making in an increasing number of applications, typically based on machine learning. Research on how to incorporate fairness into such tasks has prevalently pursued the paradigm of group fairness: ensuring that each ethnic or social group receives its fair share in the outcome of classifiers and rankings. In contrast, the alternative paradigm of individual fairness has received relatively little attention. This paper introduces a method for probabilistically clustering user records into a low-rank representation that captures individual fairness yet also achieves high accuracy in classification and regression models. Our notion of individual fairness requires that users who are similar in all task-relevant attributes such as job qualification, and disregarding all potentially discriminating attributes such as gender, should have similar outcomes. Since the case for fairness is ubiquitous across many tasks, we aim to learn general representations that can be applied to arbitrary downstream use-cases. We demonstrate the versatility of our method by applying it to classification and learning-to-rank tasks on two real-world datasets. Our experiments show substantial improvements over the best prior work for this setting

    Collaborative Deep Learning for Speech Enhancement: A Run-Time Model Selection Method Using Autoencoders

    Full text link
    We show that a Modular Neural Network (MNN) can combine various speech enhancement modules, each of which is a Deep Neural Network (DNN) specialized on a particular enhancement job. Differently from an ordinary ensemble technique that averages variations in models, the propose MNN selects the best module for the unseen test signal to produce a greedy ensemble. We see this as Collaborative Deep Learning (CDL), because it can reuse various already-trained DNN models without any further refining. In the proposed MNN selecting the best module during run time is challenging. To this end, we employ a speech AutoEncoder (AE) as an arbitrator, whose input and output are trained to be as similar as possible if its input is clean speech. Therefore, the AE can gauge the quality of the module-specific denoised result by seeing its AE reconstruction error, e.g. low error means that the module output is similar to clean speech. We propose an MNN structure with various modules that are specialized on dealing with a specific noise type, gender, and input Signal-to-Noise Ratio (SNR) value, and empirically prove that it almost always works better than an arbitrarily chosen DNN module and sometimes as good as an oracle result
    • …
    corecore