243,925 research outputs found

    Profiling user activities with minimal traffic traces

    Full text link
    Understanding user behavior is essential to personalize and enrich a user's online experience. While there are significant benefits to be accrued from the pursuit of personalized services based on a fine-grained behavioral analysis, care must be taken to address user privacy concerns. In this paper, we consider the use of web traces with truncated URLs - each URL is trimmed to only contain the web domain - for this purpose. While such truncation removes the fine-grained sensitive information, it also strips the data of many features that are crucial to the profiling of user activity. We show how to overcome the severe handicap of lack of crucial features for the purpose of filtering out the URLs representing a user activity from the noisy network traffic trace (including advertisement, spam, analytics, webscripts) with high accuracy. This activity profiling with truncated URLs enables the network operators to provide personalized services while mitigating privacy concerns by storing and sharing only truncated traffic traces. In order to offset the accuracy loss due to truncation, our statistical methodology leverages specialized features extracted from a group of consecutive URLs that represent a micro user action like web click, chat reply, etc., which we call bursts. These bursts, in turn, are detected by a novel algorithm which is based on our observed characteristics of the inter-arrival time of HTTP records. We present an extensive experimental evaluation on a real dataset of mobile web traces, consisting of more than 130 million records, representing the browsing activities of 10,000 users over a period of 30 days. Our results show that the proposed methodology achieves around 90% accuracy in segregating URLs representing user activities from non-representative URLs

    Parallel Reference Speaker Weighting for Kinematic-Independent Acoustic-to-Articulatory Inversion

    Get PDF
    Acoustic-to-articulatory inversion, the estimation of articulatory kinematics from an acoustic waveform, is a challenging but important problem. Accurate estimation of articulatory movements has the potential for significant impact on our understanding of speech production, on our capacity to assess and treat pathologies in a clinical setting, and on speech technologies such as computer aided pronunciation assessment and audio-video synthesis. However, because of the complex and speaker-specific relationship between articulation and acoustics, existing approaches for inversion do not generalize well across speakers. As acquiring speaker-specific kinematic data for training is not feasible in many practical applications, this remains an important and open problem. This paper proposes a novel approach to acoustic-to-articulatory inversion, Parallel Reference Speaker Weighting (PRSW), which requires no kinematic data for the target speaker and a small amount of acoustic adaptation data. PRSW hypothesizes that acoustic and kinematic similarities are correlated and uses speaker-adapted articulatory models derived from acoustically derived weights. The system was assessed using a 20-speaker data set of synchronous acoustic and Electromagnetic Articulography (EMA) kinematic data. Results demonstrate that by restricting the reference group to a subset consisting of speakers with strong individual speaker-dependent inversion performance, the PRSW method is able to attain kinematic-independent acoustic-to-articulatory inversion performance nearly matching that of the speaker-dependent model, with an average correlation of 0.62 versus 0.63. This indicates that given a sufficiently complete and appropriately selected reference speaker set for adaptation, it is possible to create effective articulatory models without kinematic training data

    Semantic Part Segmentation using Compositional Model combining Shape and Appearance

    Get PDF
    In this paper, we study the problem of semantic part segmentation for animals. This is more challenging than standard object detection, object segmentation and pose estimation tasks because semantic parts of animals often have similar appearance and highly varying shapes. To tackle these challenges, we build a mixture of compositional models to represent the object boundary and the boundaries of semantic parts. And we incorporate edge, appearance, and semantic part cues into the compositional model. Given part-level segmentation annotation, we develop a novel algorithm to learn a mixture of compositional models under various poses and viewpoints for certain animal classes. Furthermore, a linear complexity algorithm is offered for efficient inference of the compositional model using dynamic programming. We evaluate our method for horse and cow using a newly annotated dataset on Pascal VOC 2010 which has pixelwise part labels. Experimental results demonstrate the effectiveness of our method

    Factorized Topic Models

    Full text link
    In this paper we present a modification to a latent topic model, which makes the model exploit supervision to produce a factorized representation of the observed data. The structured parameterization separately encodes variance that is shared between classes from variance that is private to each class by the introduction of a new prior over the topic space. The approach allows for a more eff{}icient inference and provides an intuitive interpretation of the data in terms of an informative signal together with structured noise. The factorized representation is shown to enhance inference performance for image, text, and video classification.Comment: ICLR 201

    Effect of Morphological Changes due to Increasing Carbon Nanoparticles Content on the Quasi-Static Mechanical Response of Epoxy Resin

    Get PDF
    Mechanical failure in epoxy polymer and composites leads them to commonly be referred to as inherently brittle due to the presence of polymerization-induced microcrack and microvoids, which are barriers to high-performance applications, e.g., in aerospace structures. Numerous studies have been carried out on epoxy's strengthening and toughening via nanomaterial reinforcement, e.g., using rubber nanoparticles in the epoxy matrix of new composite aircraft. However, extremely cautious process and functionalization steps must be taken in order to achieve high-quality dispersion and bonding, the development of which is not keeping pace with large structures applications. In this article, we report our studies on the mechanical performance of an epoxy polymer reinforced with graphite carbon nanoparticles (CNPs), and the possible effects arising from a straightforward, rapid stir-mixing technique. The CNPs were embedded in a low viscosity epoxy resin, with the CNP weight percentage (wt %) being varied between 1% and 5%. Simplified stirring embedment was selected in the interests of industrial process facilitation, and functionalization was avoided to reduce the number of parameters involved in the study. Embedment conditions and timing were held constant for all wt %. The CNP filled epoxy resin was then injected into an aluminum mold and cured under vacuum conditions at 80 °C for 12 h. A series of test specimens were then extracted from the mold, and tested under uniaxial quasi-static tension, compression, and nanoindentation. Elementary mechanical properties including failure strain, hardness, strength, and modulus were measured. The mechanical performance was improved by the incorporation of 1 and 2 wt % of CNP but was degraded by 5 wt % CNP, mainly attributed to the morphological change, including re-agglomeration, with the increasing CNP wt %. This change strongly correlated with the mechanical response in the presence of CNP, and was the major governing mechanism leading to both mechanical improvement and degradation

    On the merits of the Gaussian Mixture as a model for oriented edgel distributions

    Get PDF
    The aim of this report is to establish the credibility of the Gaussian Mixture Model (GMM) as a model for the distributions of oriented edgels of rigid and biological objects in noisy images. This is tackled in two stages: first, the response of the Soble filter to noisy pixels is analysed to show that the result holds for smooth ridid objects. Second, arguments are presented to support the proposition that the model can also effectively capture the added uncertainty introduced by natural shape variation, as found in images of biological objects. The result has particular application in the extension of the Generalized Hough Transform (GHT) to deformable shapes; in particular if offers a tailored and manipulable alternative to the non-parametric kernel density estimate used by Ecabert and Thiran

    Hallucinating optimal high-dimensional subspaces

    Full text link
    Linear subspace representations of appearance variation are pervasive in computer vision. This paper addresses the problem of robustly matching such subspaces (computing the similarity between them) when they are used to describe the scope of variations within sets of images of different (possibly greatly so) scales. A naive solution of projecting the low-scale subspace into the high-scale image space is described first and subsequently shown to be inadequate, especially at large scale discrepancies. A successful approach is proposed instead. It consists of (i) an interpolated projection of the low-scale subspace into the high-scale space, which is followed by (ii) a rotation of this initial estimate within the bounds of the imposed ``downsampling constraint''. The optimal rotation is found in the closed-form which best aligns the high-scale reconstruction of the low-scale subspace with the reference it is compared to. The method is evaluated on the problem of matching sets of (i) face appearances under varying illumination and (ii) object appearances under varying viewpoint, using two large data sets. In comparison to the naive matching, the proposed algorithm is shown to greatly increase the separation of between-class and within-class similarities, as well as produce far more meaningful modes of common appearance on which the match score is based.Comment: Pattern Recognition, 201
    • …
    corecore