4,556 research outputs found

    An Efficient Mixed Integer Programming Algorithm for Minimizing the Training Sample Misclassification Cost in Two-group Classification

    Get PDF
    In this paper, we introduce the Divide and Conquer (D&C) algorithm, a computationally efficient algorithm for determining classification rules which minimize the training sample misclassification cost in two-group classification. This classification rule can be derived using mixed integer programming (MIP) techniques. However, it is well-documented that the complexity of MIP-based classification problems grows exponentially as a function of the size of the training sample and the number of attributes describing the observations, requiring special-purpose algorithms to solve even small size problems within a reasonable computational time. The D&C algorithm derives its name from the fact that it relies, a.o., on partitioning the problem in smaller, more easily handled subproblems, rendering it substantially faster than previously proposed algorithms. The D&C algorithm solves the problem to the exact optimal solution (i.e., it is not a heuristic that approximates the solution), and allows for the analysis of much larger training samples than previous methods. For instance, our computational experiments indicate that, on average, the D&C algorithm solves problems with 2 attributes and 500 observations more than 3 times faster, and problems with 5 attributes and 100 observations over 50 times faster than Soltysik and Yarnold's software, which may be the fastest existing algorithm. We believe that the D&C algorithm contributes significantly to the field of classification analysis, because it substantially widens the array of data sets that can be analyzed meaningfully using methods which require MIP techniques, in particular methods which seek to minimize the misclassification cost in the training sample. The programs implementing the D&C algorithm are available from the authors upon request

    Theory and Applications of Robust Optimization

    Full text link
    In this paper we survey the primary research, both theoretical and applied, in the area of Robust Optimization (RO). Our focus is on the computational attractiveness of RO approaches, as well as the modeling power and broad applicability of the methodology. In addition to surveying prominent theoretical results of RO, we also present some recent results linking RO to adaptable models for multi-stage decision-making problems. Finally, we highlight applications of RO across a wide spectrum of domains, including finance, statistics, learning, and various areas of engineering.Comment: 50 page

    Nontraditional Approaches to Statistical Classification: Some Perspectives on Lp-Norm Methods

    Get PDF
    The body of literature on classification method which estimate boundaries between the groups (classes) by optimizing a function of the L_{p}-norm distances of observations in each group from these boundaries, is maturing fast. The number of published research articles on this topic, especially on mathematical programming (MP) formulations and techniques for L_{p}-norm classification, is now sizable. This paper highlights historical developments that have defined the field, and looks ahead at challenges that may shape new research directions in the next decade. In the first part, the paper summarizes basic concepts and ideas, and briefly reviews past research. Throughout, an attempt is made to integrate a number of the most important L_{p}-norm methods proposed to date within a unified framework, emphasizing their conceptual differences and similarities, rather than focusing on mathematical detail. In the second part, the paper discusses several potential directions for future research in this area. The long-term prospects of L_{p}-norm classification (and discriminant) research may well hinge upon whether or not the channels of communication between on the one hand researchers active in L_{p}-norm classification, who tend to have their roots primarily in decision sciences, the management sciences, computer sciences and engineering, and on the other hand practitioners and researchers in the statistical classification community, will be improved. This paper offers potential reasons for the lack of communication between these groups, and suggests ways in which L_{p}-norm research may be strengthened from a statistical viewpoint. The results obtained in L_{p}-norm classification studies are clearly relevant and of importance to all researchers and practitioners active in classification and discrimination analysis. The paper also briefly discusses artificial neural networks, a promising nontraditional method for classification which has recently emerged, and suggests that it may be useful to explore hybrid classification methods that take advantage of the complementary strengths of different methods, e.g., neural network and L_{p}-norm methods

    Supervised classification and mathematical optimization

    Get PDF
    Data Mining techniques often ask for the resolution of optimization problems. Supervised Classification, and, in particular, Support Vector Machines, can be seen as a paradigmatic instance. In this paper, some links between Mathematical Optimization methods and Supervised Classification are emphasized. It is shown that many different areas of Mathematical Optimization play a central role in off-the-shelf Supervised Classification methods. Moreover, Mathematical Optimization turns out to be extremely useful to address important issues in Classification, such as identifying relevant variables, improving the interpretability of classifiers or dealing with vagueness/noise in the data.Ministerio de Ciencia e InnovaciónJunta de Andalucí

    Dynamic Linear Discriminant Analysis in High Dimensional Space

    Get PDF
    High-dimensional data that evolve dynamically feature predominantly in the modern data era. As a partial response to this, recent years have seen increasing emphasis to address the dimensionality challenge. However, the non-static nature of these datasets is largely ignored. This paper addresses both challenges by proposing a novel yet simple dynamic linear programming discriminant (DLPD) rule for binary classification. Different from the usual static linear discriminant analysis, the new method is able to capture the changing distributions of the underlying populations by modeling their means and covariances as smooth functions of covariates of interest. Under an approximate sparse condition, we show that the conditional misclassification rate of the DLPD rule converges to the Bayes risk in probability uniformly over the range of the variables used for modeling the dynamics, when the dimensionality is allowed to grow exponentially with the sample size. The minimax lower bound of the estimation of the Bayes risk is also established, implying that the misclassification rate of our proposed rule is minimax-rate optimal. The promising performance of the DLPD rule is illustrated via extensive simulation studies and the analysis of a breast cancer dataset.Comment: 34 pages; 3 figure

    Analysis of the Consistency of a Mixed Integer Programming-based Multi-Category Constrained Discriminant Model

    Get PDF
    Classification is concerned with the development of rules for the allocation of observations to groups, and is a fundamental problem in machine learning. Much of previous work on classification models investigates two-group discrimination. Multi-category classification is less-often considered due to the tendency of generalizations of two-group models to produce misclassification rates that are higher than desirable. Indeed, producing “good” two-group classification rules is a challenging task for some applications, and producing good multi-category rules is generally more difficult. Additionally, even when the “optimal” classification rule is known, inter-group misclassification rates may be higher than tolerable for a given classification model. We investigate properties of a mixed-integer programming based multi-category classification model that allows for the pre-specification of limits on inter-group misclassification rates. The mechanism by which the limits are satisfied is the use of a reserved judgment region, an artificial category into which observations are placed whose attributes do not sufficiently indicate membership to any particular group. The method is shown to be a consistent estimator of a classification rule with misclassification limits, and performance on simulated and real-world data is demonstrated
    corecore