170 research outputs found

    Production Scheduling in Integrated Steel Manufacturing

    Get PDF
    Steel manufacturing is both energy and capital intensive, and it includes multiple production stages, such as iron-making, steelmaking, and rolling. This dissertation investigates the order schedule coordination problem in a multi-stage manufacturing context. A mixed-integer linear programming model is proposed to generate operational (up to the minute) schedules for the steelmaking and rolling stages simultaneously. The proposed multi-stage scheduling model in integrated steel manufacturing can provide a broader view of the cost impact on the individual stages. It also extends the current order scheduling literature in steel manufacturing from a single-stage focus to the coordinated multi-stage focus. Experiments are introduced to study the impact of problem size (number of order batches), order due time and demand pattern on solution performance. Preliminary results from small data instances are reported. A novel heuristic algorithm, Wind Driven Algorithm (WDO), is explained in detail, and numerical parameter study is presented. Another well-known and effective heuristic approach based on Particle Swarm Optimization (PSO) is used as a benchmark for performance comparison. Both algorithms are implemented to solve the scheduling model. Results show that WDO outperforms PSO for the proposed model on solving large sample data instances. Novel contributions and future research areas are highlighted in the conclusion

    Optimal and Heuristic Lead-Time Quotation For an Integrated Steel Mill With a Minimum Batch Size

    Get PDF
    This paper presents a model of lead-time policies for a production system, such as an integrated steel mill, in which the bottleneck process requires a minimum batch size. An accurate understanding of internal lead-time quotations is necessary for making good customer delivery-date promises, which must take into account processing time, queueing time and time for arrival of the requisite volume of orders to complete the minimum batch size requirement. The problem is modeled as a stochastic dynamic program with a large state space. A computational study demonstrates that lead time for an arriving order should generally be a decreasing function of the amount of that product already on order (and waiting for minimum batch size to accumulate), which leads to a very fast and accurate heuristic. The computational study also provides insights into the relationship between lead-time quotation, arrival rate, and the sensitivity of customers to the length of delivery promises

    Energy system optimization for a scrap based steel plant using mixed integer linear programming

    Get PDF
    Abstract: In this work a mathematic model to simulate and optimize the energy system of a scrap based plant has been developed. Scrap based steelmaking is an energy intense production system. The potential for energy saving by system optimization is therefore high, even if the percentage of saved energy is relatively small. The model includes scrap pre-treatment, electrical arc furnace, ladle furnace and continuous casting units. To estimate the chemical compositions of the scrap charged into the EAF a statistical model based on an existing EAF plant has been used to provide the inputs to the model. Distribution factors have been used to describe the distribution of elements and oxides between the steel, slag and off gas/dust. To calculate the energy consumption in the electrical arc furnace a combination of an empirical and theoretical energy formula has been used. The model represents a general description of the most common process in electric steelmaking. It is suited to be adapted for specific plants with adjustments to the model parameters. The model gives reasonable results which follow the chemical composition of steel and slag and yield. The model can be a powerful tool to optimize the scrap mix and injectants towards energy and costs

    Material and energy flows of the iron and steel industry: status quo, challenges and perspectives

    Get PDF
    Integrated analysis and optimization of material and energy flows in the iron and steel industry have drawn considerable interest from steelmakers, energy engineers, policymakers, financial firms, and academic researchers. Numerous publications in this area have identified their great potential to bring significant benefits and innovation. Although much technical work has been done to analyze and optimize material and energy flows, there is a lack of overview of material and energy flows of the iron and steel industry. To fill this gap, this work first provides an overview of different steel production routes. Next, the modelling, scheduling and interrelation regarding material and energy flows in the iron and steel industry are presented by thoroughly reviewing the existing literature. This study selects eighty publications on the material and energy flows of steelworks, from which a map of the potential of integrating material and energy flows for iron and steel sites is constructed. The paper discusses the challenges to be overcome and the future directions of material and energy flow research in the iron and steel industry, including the fundamental understandings of flow mechanisms, the dynamic material and energy flow scheduling and optimization, the synergy between material and energy flows, flexible production processes and flexible energy systems, smart steel manufacturing and smart energy systems, and revolutionary steelmaking routes and technologies

    Auction-based approach to resolve the scheduling problem in the steel making process

    Get PDF
    Steel production is an extremely complex process and determining coherent schedules for the wide variety of production steps in a dynamic environment, where disturbances frequently occur, is a challenging task. In the steel production process, the blast furnace continuously produces liquid iron, which is transformed into liquid steel in the melt shop. The majority of the molten steel passes through a continuous caster to form large steel slabs, which are rolled into coils in the hot strip mill. The scheduling system of these processes has very different objectives and constraints, and operates in an environment where there is a substantial quantity of real-time information concerning production failures and customer requests. The steel making process, which includes steel making followed by continuous casting, is generally the main bottleneck in steel production. Therefore, comprehensive scheduling of this process is critical to improve the quality and productivity of the entire production system. This paper addresses the scheduling problem in the steel making process. The methodology of winner determination using the combinatorial auction process is employed to solve the aforementioned problem. In the combinatorial auction, allowing bidding on a combination of assets offers a way of enhancing the efficiency of allocating the assets. In this paper, the scheduling problem in steel making has been formulated as a linear integer program to determine the scheduling sequence for different charges. Bids are then obtained for sequencing the charges. Next, a heuristic approach is used to evaluate the bids. The computational results show that our algorithm can obtain optimal or near-optimal solutions for combinatorial problems in a reasonable computation time. The proposed algorithm has been verified by a case study

    Improving sustainability of energy intensive sectors through multi-objective models

    Get PDF
    openGlobal energy consumption and the related carbon dioxide emissions, which represent a large share of the overall anthropogenic greenhouse gas production, are continuously increasing since most of the energy needs are still provided by fossil fuels, thus constituting one of the main issues to be addressed in the climate change mitigation agenda. To achieve the Paris Agreement’s ambitious objectives, an energy transition towards sustainable energy systems based on the new smart energy system (SES) paradigm is needed, thus integrating the various energy sources, vectors and needs within the sectors (electricity, heating, cooling, transport, etc.). However, optimal planning, design and management of complex integrated systems such as SES require to make use of proper decision support models based on multi-objective optimization techniques, since a sustainability analysis intrinsically involves environmental, economic and social aspects. Furthermore, a SES project involves several stakeholders, each driven by different and often conflicting objectives, which should be considered within such models, to remove some relevant barriers to the energy transition. Focusing on the improvement of the sustainability of the energy-intensive sectors, the main objective of this thesis is thus the development of a decision support framework based on multi-objective optimization with the aim to support the decision makers in the planning, design and management of integrated smart energy systems, while considering the different involved stakeholders. The proposed model, composed by three main phases (namely investigative, design and decision-making), has been developed by steps via its application on case studies belonging to two main topics concerning the improvement of the sustainability performance of energy-intensive sectors through the implementation of the smart energy system concept. The first main topic is representative of the context of industrial districts and concerns their sustainable energy supply based on technical solutions specifically designed for cluster of firms, allowed by geographical proximity. The other one concerns the synergic integration between industrial and urban areas, through the recovery of waste energy from industrial processes to feed municipal district heating with a carbon-free source. The case studies have been selected, within the opportunities available in the local territorial context, not only because fit for the implementation of the smart energy system concept, but also due to their suitability for the implementation of different phases of the proposed decision support system (DSS).Dottorato di ricerca in Scienze dell'ingegneria energetica e ambientaleopenCiotti, Gelli

    AI based state observer for optimal process control: application to digital twins of manufacturing plants

    Get PDF
    Les plantes de fabricació estan subjectes a restriccions dinàmiques que requereixen una optimització robusta per millorar el rendiment i l' eficiència del sistema. En aquest projecte es presenta un nou sistema de control òptim basat en IA per a un bessó digital d' una planta de fabricació. El sistema proposat implementa un observador d' estat basat en IA per predir l' estat intern d' un model de procés altament incert i no lineal, tal com seria un sistema de producció real. Una funció d' optimització multi-objectiu es utilitzada per controlar els paràmetres de producció i mantenir el procés funcionant en condicions òptimes. El mètode d'Optimització del Control basat en AI es va implementar en un cas d'estudi d'una planta de fabricació d'acer. El rendiment del sistema es va avaluar utilitzant els KPIs de fabricació rellevants, com ara les taxes d'utilització i productivitat de l'equip del procés. L'ús de sistema de control optimitzat via AI millora amb èxit els KPIs de procés i potencialment podria reduir els costos de producció.Las plantas de fabricación están sujetas a restricciones dinámicas que requieren una optimización robusta para mejorar el rendimiento y la eficiencia. En este informe se presenta un nuevo sistema de control óptimo basado en IA para un gemelo digital de una planta de fabricación. El sistema propuesto implementa un observador de estado basado en IA para predecir el estado interno de un modelo de proceso altamente incierto y no lineal, tal y como sería un sistema de producción real. Una función de optimización multiobjetivo es utilizada para controlar los parámetros de producción y mantener el proceso funcionando en condiciones óptimas. El método de Optimización del Control basado en AI se implementó en un caso de estudio de una planta de fabricación de acero. El rendimiento del sistema se evaluó utilizando los KPIs de fabricación relevantes, como la utilización del equipo y las tasas de productividad del proceso. El uso del sistema de control óptimo de IA mejora los KPIs del proceso y podría reducir potencialmente los costos de producción.Manufacturing plants are subject to dynamic constrains requiring robust optimization methods for improved performance and efficiency. A novel AI based optimal control system for a Digital Twin of a manufacturing plant is presented in this report. The proposed system implements an AI based state observer to predict the internal state of a highly uncertain and non-linear process model, such as a real production system. A multi-objective optimization function is used to control production parameters and keeps the process running at an optimal condition. The AI Optimization Control method was implemented on a study case on a steel manufacturing plant. The performance of the system was evaluated using the relevant manufacturing KPIs such as the equipment utilization and productivity rates of the process. The use of the AI optimal control system successfully improves the process KPIs and could potentially reduce production costs

    A model on CO 2

    Full text link
    corecore