48 research outputs found

    A mixed approach to similarity metric selection in affinity propagation-based WiFi fingerprinting indoor positioning

    Get PDF
    The weighted k-nearest neighbors (WkNN) algorithm is by far the most popular choice in the design of fingerprinting indoor positioning systems based on WiFi received signal strength (RSS). WkNN estimates the position of a target device by selecting k reference points (RPs) based on the similarity of their fingerprints with the measured RSS values. The position of the target device is then obtained as a weighted sum of the positions of the k RPs. Two-step WkNN positioning algorithms were recently proposed, in which RPs are divided into clusters using the affinity propagation clustering algorithm, and one representative for each cluster is selected. Only cluster representatives are then considered during the position estimation, leading to a significant computational complexity reduction compared to traditional, flat WkNN. Flat and two-step WkNN share the issue of properly selecting the similarity metric so as to guarantee good positioning accuracy: in two-step WkNN, in particular, the metric impacts three different steps in the position estimation, that is cluster formation, cluster selection and RP selection and weighting. So far, however, the only similarity metric considered in the literature was the one proposed in the original formulation of the affinity propagation algorithm. This paper fills this gap by comparing different metrics and, based on this comparison, proposes a novel mixed approach in which different metrics are adopted in the different steps of the position estimation procedure. The analysis is supported by an extensive experimental campaign carried out in a multi-floor 3D indoor positioning testbed. The impact of similarity metrics and their combinations on the structure and size of the resulting clusters, 3D positioning accuracy and computational complexity are investigated. Results show that the adoption of metrics different from the one proposed in the original affinity propagation algorithm and, in particular, the combination of different metrics can significantly improve the positioning accuracy while preserving the efficiency in computational complexity typical of two-step algorithms

    ViFi: virtual fingerprinting WiFi-based indoor positioning via multi-wall multi-floor propagation model

    Get PDF
    Widespread adoption of indoor positioning systems based on WiFi fingerprinting is at present hindered by the large efforts required for measurements collection during the offline phase. Two approaches were recently proposed to address such issue: crowdsourcing and RSS radiomap prediction, based on either interpolation or propagation channel model fitting from a small set of measurements. RSS prediction promises better positioning accuracy when compared to crowdsourcing, but no systematic analysis of the impact of system parameters on positioning accuracy is available. This paper fills this gap by introducing ViFi, an indoor positioning system that relies on RSS prediction based on Multi-Wall Multi-Floor (MWMF) propagation model to generate a discrete RSS radiomap (virtual fingerprints). Extensive experimental results, obtained in multiple independent testbeds, show that ViFi outperforms virtual fingerprinting systems adopting simpler propagation models in terms of accuracy, and allows a sevenfold reduction in the number of measurements to be collected, while achieving the same accuracy of a traditional fingerprinting system deployed in the same environment. Finally, a set of guidelines for the implementation of ViFi in a generic environment, that saves the effort of collecting additional measurements for system testing and fine tuning, is proposed

    New Cluster Selection and Fine-grained Search for k-Means Clustering and Wi-Fi Fingerprinting

    Get PDF
    Ponencia presentada en 2020 International Conference on Localization and GNSS (ICL-GNSS), 02-04 June 2020, Tampere, FinlandWi-Fi fingerprinting is a popular technique for Indoor Positioning Systems (IPSs) thanks to its low complexity and the ubiquity of WLAN infrastructures. However, this technique may present scalability issues when the reference dataset (radio map) is very large. To reduce the computational costs, k-Means Clustering has been successfully applied in the past. However, it is a general-purpose algorithm for unsupervised classification. This paper introduces three variants that apply heuristics based on radio propagation knowledge in the coarse and fine-grained searches. Due to the heterogeneity either in the IPS side (including radio map generation) and in the network infrastructure, we used an evaluation framework composed of 16 datasets. In terms of general positioning accuracy and computational costs, the best proposed k-means variant provided better general positioning accuracy and a significantly better computational cost –around 40% lower– than the original k-means

    EWOk: towards efficient multidimensional compression of indoor positioning datasets

    Get PDF
    Indoor positioning performed directly at the end-user device ensures reliability in case the network connection fails but is limited by the size of the RSS radio map necessary to match the measured array to the device’s location. Reducing the size of the RSS database enables faster processing, and saves storage space and radio resources necessary for the database transfer, thus cutting implementation and operation costs, and increasing the quality of service. In this work, we propose EWOk, an Element-Wise cOmpression using k-means, which reduces the size of the individual radio measurements within the fingerprinting radio map while sustaining or boosting the dataset’s positioning capabilities. We show that the 7-bit representation of measurements is sufficient in positioning scenarios, and reducing the data size further using EWOk results in higher compression and faster data transfer and processing. To eliminate the inherent uncertainty of k-means we propose a data-dependent, non-random initiation scheme to ensure stability and limit variance. We further combine EWOk with principal component analysis to show its applicability in combination with other methods, and to demonstrate the efficiency of the resulting multidimensional compression. We evaluate EWOk on 25 RSS fingerprinting datasets and show that it positively impacts compression efficiency, and positioning performance.This work was supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska Curie grant agreements No. 813278 (A-WEAR: A network for dynamic wearable applications with privacy constraints, http://www.a-wear.eu/) and No. 101023072 (ORIENTATE: Low-cost Reliable Indoor Positioning in Smart Factories, http://orientate.dsi.uminho.pt) and Academy of Finland (grants #319994, #323244)

    Scalable and Efficient Clustering for Fingerprint-Based Positioning

    Get PDF
    Indoor Positioning based on wifi fingerprinting needs a reference dataset, also known as a radio map, in order to match the incoming fingerprint in the operational phase with the most similar fingerprint in the dataset and then estimate the device position indoors. Scalability problems may arise when the radio map is large, e.g., providing positioning in large geographical areas or involving crowdsourced data collection. Some researchers divide the radio map into smaller independent clusters, such that the search area is reduced to less dense groups than the initial database with similar features. Thus, the computational load in the operational stage is reduced both at the user devices and on servers. Nevertheless, the clustering models are machine-learning algorithms without specific domain knowledge on indoor positioning or signal propagation. This work proposes several clustering variants to optimize the coarse and fine-grained search and evaluates them over different clustering models and datasets. Moreover, we provide guidelines to obtain efficient and accurate positioning depending on the dataset features. Finally, we show that the proposed new clustering variants reduce the execution time by half and the positioning error by ≈7% with respect to fingerprinting with the traditional clustering models.publishedVersionPeer reviewe

    Indoor Positioning and Fingerprinting:The R Package ipft

    Get PDF
    Methods based on Received Signal Strength Indicator (RSSI) fingerprinting are in theforefront among several techniques being proposed for indoor positioning. This paper introducesthe R packageipft, which provides algorithms and utility functions for indoor positioning usingfingerprinting techniques. These functions are designed for manipulation of RSSI fingerprint datasets, estimation of positions, comparison of the performance of different positioning models, andgraphical visualization of data. Well-known machine learning algorithms are implemented in thispackage to perform analysis and estimations over RSSI data sets. The paper provides a descriptionof these algorithms and functions, as well as examples of its use with real data. Theipftpackageprovides a base that we hope to grow into a comprehensive library of fingerprinting-based indoorpositioning methodologies

    Lightweight Wi-Fi Fingerprinting with a Novel RSS Clustering Algorithm

    Get PDF
    Nowadays, several indoor positioning solutions sup-port Wi-Fi and use this technology to estimate the user position. It is characterized by its low cost, availability in indoor and outdoor environments, and a wide variety of devices support Wi-Fi technology. However, this technique suffers from scalability problems when the radio map has a large number of reference fingerprints because this might increase the time response in the operational phase. In order to minimize the time response, many solutions have been proposed along the time. The most common solution is to divide the data set into clusters. Thus, the incoming fingerprint will be compared with a specific number of samples grouped by, for instance similarity (clusters). Many of the current studies have proposed a variety of solutions based on the modification of traditional clustering algorithms in order to provide a better distribution of samples and reduce the computational load. This work proposes a new clustering method based on the maximum Received Signal Strength (RSS) values to join similar fingerprints. As a result, the proposed fingerprinting clustering method outperforms three of the most well-known clustering algorithms in terms of processing time at the operational phase of fingerprinting.acceptedVersionPeer reviewe

    Positioning by multicell fingerprinting in urban NB-IoT networks

    Get PDF
    Narrowband Internet of Things (NB-IoT) has quickly become a leading technology in the deployment of IoT systems and services, owing to its appealing features in terms of coverage and energy efficiency, as well as compatibility with existing mobile networks. Increasingly, IoT services and applications require location information to be paired with data collected by devices; NB-IoT still lacks, however, reliable positioning methods. Time-based techniques inherited from long-term evolution (LTE) are not yet widely available in existing networks and are expected to perform poorly on NB-IoT signals due to their narrow bandwidth. This investigation proposes a set of strategies for NB-IoT positioning based on fingerprinting that use coverage and radio information from multiple cells. The proposed strategies were evaluated on two large-scale datasets made available under an open-source license that include experimental data from multiple NB-IoT operators in two large cities: Oslo, Norway, and Rome, Italy. Results showed that the proposed strategies, using a combination of coverage and radio information from multiple cells, outperform current state-of-the-art approaches based on single cell fingerprinting, with a minimum average positioning error of about 20 m when using data for a single operator that was consistent across the two datasets vs. about 70 m for the current state-of-the-art approaches. The combination of data from multiple operators and data smoothing further improved positioning accuracy, leading to a minimum average positioning error below 15 m in both urban environments
    corecore