618 research outputs found

    Utilizing Analytical Hierarchy Process for Pauper House Programme in Malaysia

    Get PDF
    In Malaysia, the selection and evaluation of candidates for Pauper House Programme (PHP) are done manually. In this paper, a technique based on Analytical Hierarchy Technique (AHP) is designed and developed in order to make an evaluation and selection of PHP application. The aim is to ensure the selection process is more precise, accurate and can avoid any biasness issue. This technique is studied and designed based on the Pauper assessment technique from one of district offices in Malaysia. A hierarchical indexes are designed based on the criteria that been used in the official form of PHP application. A number of 23 samples of data which had been endorsed by Exco of State in Malaysia are used to test this technique. Furthermore the comparison of those two methods are given in this paper. All the calculations of this technique are done in a software namely Expert Choice version 11.5. By comparing the manual and AHP shows that there are three (3) samples that are not qualified. The developed technique also satisfies in term of ease of accuracy and preciseness but need a further study due to some limitation as explained in the recommendation of this paper

    Some Theorems for Feed Forward Neural Networks

    Full text link
    In this paper we introduce a new method which employs the concept of "Orientation Vectors" to train a feed forward neural network and suitable for problems where large dimensions are involved and the clusters are characteristically sparse. The new method is not NP hard as the problem size increases. We `derive' the method by starting from Kolmogrov's method and then relax some of the stringent conditions. We show for most classification problems three layers are sufficient and the network size depends on the number of clusters. We prove as the number of clusters increase from N to N+dN the number of processing elements in the first layer only increases by d(logN), and are proportional to the number of classes, and the method is not NP hard. Many examples are solved to demonstrate that the method of Orientation Vectors requires much less computational effort than Radial Basis Function methods and other techniques wherein distance computations are required, in fact the present method increases logarithmically with problem size compared to the Radial Basis Function method and the other methods which depend on distance computations e.g statistical methods where probabilistic distances are calculated. A practical method of applying the concept of Occum's razor to choose between two architectures which solve the same classification problem has been described. The ramifications of the above findings on the field of Deep Learning have also been briefly investigated and we have found that it directly leads to the existence of certain types of NN architectures which can be used as a "mapping engine", which has the property of "invertibility", thus improving the prospect of their deployment for solving problems involving Deep Learning and hierarchical classification. The latter possibility has a lot of future scope in the areas of machine learning and cloud computing.Comment: 15 pages 13 figure

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Artificial intelligence methodologies and their application to diabetes

    Get PDF
    In the past decade diabetes management has been transformed by the addition of continuous glucose monitoring and insulin pump data. More recently, a wide variety of functions and physiologic variables, such as heart rate, hours of sleep, number of steps walked and movement, have been available through wristbands or watches. New data, hydration, geolocation, and barometric pressure, among others, will be incorporated in the future. All these parameters, when analyzed, can be helpful for patients and doctors' decision support. Similar new scenarios have appeared in most medical fields, in such a way that in recent years, there has been an increased interest in the development and application of the methods of artificial intelligence (AI) to decision support and knowledge acquisition. Multidisciplinary research teams integrated by computer engineers and doctors are more and more frequent, mirroring the need of cooperation in this new topic. AI, as a science, can be defined as the ability to make computers do things that would require intelligence if done by humans. Increasingly, diabetes-related journals have been incorporating publications focused on AI tools applied to diabetes. In summary, diabetes management scenarios have suffered a deep transformation that forces diabetologists to incorporate skills from new areas. This recently needed knowledge includes AI tools, which have become part of the diabetes health care. The aim of this article is to explain in an easy and plane way the most used AI methodologies to promote the implication of health care providers?doctors and nurses?in this field

    3D object detection from point clouds with dense pose voters

    Get PDF
    Il riconoscimento di oggetti è sempre stato un compito sfidante per la Computer Vision. Trova applicazione in molti campi, principalmente nell’industria, come ad esempio per permettere ad un robot di trovare gli oggetti da afferrare. Negli ultimi decenni tali compiti hanno trovato nuovi modi di essere raggiunti grazie alla riscoperta delle Reti Neurali, in particolare le Reti Neurali Convoluzionali. Questo tipo di reti ha raggiunto ottimi risultati in molte applicazioni per il riconoscimento e la classificazione degli oggetti. La tendenza, ora, `e quella di utilizzare tali reti anche nell’industria automobilistica per cercare di rendere reale il sogno delle automobili che guidano da sole. Ci sono molti lavori importanti sul riconoscimento delle auto dalle immagini. In questa tesi presentiamo la nostra architettura di Rete Neurale Convoluzionale per il riconoscimento di automobili e la loro posizione nello spazio, utilizzando solo input lidar. Salvando le informazioni riguardanti le bounding box attorno all’auto a livello del punto ci assicura una buona previsione anche in situazioni in cui le automobili sono occluse. I test vengono eseguiti sul dataset più utilizzato per il riconoscimento di automobili e pedoni nelle applicazioni di guida autonoma

    Neural Networks retrieving Boolean patterns in a sea of Gaussian ones

    Full text link
    Restricted Boltzmann Machines are key tools in Machine Learning and are described by the energy function of bipartite spin-glasses. From a statistical mechanical perspective, they share the same Gibbs measure of Hopfield networks for associative memory. In this equivalence, weights in the former play as patterns in the latter. As Boltzmann machines usually require real weights to be trained with gradient descent like methods, while Hopfield networks typically store binary patterns to be able to retrieve, the investigation of a mixed Hebbian network, equipped with both real (e.g., Gaussian) and discrete (e.g., Boolean) patterns naturally arises. We prove that, in the challenging regime of a high storage of real patterns, where retrieval is forbidden, an extra load of Boolean patterns can still be retrieved, as long as the ratio among the overall load and the network size does not exceed a critical threshold, that turns out to be the same of the standard Amit-Gutfreund-Sompolinsky theory. Assuming replica symmetry, we study the case of a low load of Boolean patterns combining the stochastic stability and Hamilton-Jacobi interpolating techniques. The result can be extended to the high load by a non rigorous but standard replica computation argument.Comment: 16 pages, 1 figur

    Self-Supervised Learning with an Information Maximization Criterion

    Full text link
    Self-supervised learning allows AI systems to learn effective representations from large amounts of data using tasks that do not require costly labeling. Mode collapse, i.e., the model producing identical representations for all inputs, is a central problem to many self-supervised learning approaches, making self-supervised tasks, such as matching distorted variants of the inputs, ineffective. In this article, we argue that a straightforward application of information maximization among alternative latent representations of the same input naturally solves the collapse problem and achieves competitive empirical results. We propose a self-supervised learning method, CorInfoMax, that uses a second-order statistics-based mutual information measure that reflects the level of correlation among its arguments. Maximizing this correlative information measure between alternative representations of the same input serves two purposes: (1) it avoids the collapse problem by generating feature vectors with non-degenerate covariances; (2) it establishes relevance among alternative representations by increasing the linear dependence among them. An approximation of the proposed information maximization objective simplifies to a Euclidean distance-based objective function regularized by the log-determinant of the feature covariance matrix. The regularization term acts as a natural barrier against feature space degeneracy. Consequently, beyond avoiding complete output collapse to a single point, the proposed approach also prevents dimensional collapse by encouraging the spread of information across the whole feature space. Numerical experiments demonstrate that CorInfoMax achieves better or competitive performance results relative to the state-of-the-art SSL approaches
    corecore