72 research outputs found

    Joint dimensioning of server and network infrastructure for resilient optical grids/clouds

    Get PDF
    We address the dimensioning of infrastructure, comprising both network and server resources, for large-scale decentralized distributed systems such as grids or clouds. We design the resulting grid/cloud to be resilient against network link or server failures. To this end, we exploit relocation: Under failure conditions, a grid job or cloud virtual machine may be served at an alternate destination (i.e., different from the one under failure-free conditions). We thus consider grid/cloud requests to have a known origin, but assume a degree of freedom as to where they end up being served, which is the case for grid applications of the bag-of-tasks (BoT) type or hosted virtual machines in the cloud case. We present a generic methodology based on integer linear programming (ILP) that: 1) chooses a given number of sites in a given network topology where to install server infrastructure; and 2) determines the amount of both network and server capacity to cater for both the failure-free scenario and failures of links or nodes. For the latter, we consider either failure-independent (FID) or failure-dependent (FD) recovery. Case studies on European-scale networks show that relocation allows considerable reduction of the total amount of network and server resources, especially in sparse topologies and for higher numbers of server sites. Adopting a failure-dependent backup routing strategy does lead to lower resource dimensions, but only when we adopt relocation (especially for a high number of server sites): Without exploiting relocation, potential savings of FD versus FID are not meaningful

    Fundamental schemes to determine disjoint paths for multiple failure scenarios

    Get PDF
    Disjoint path routing approaches can be used to cope with multiple failure cenarios. This can be achieved using a set of k (k>2) link- (or node-) disjoint path pairs (in single-cost and multi-cost networks). Alternatively, if Shared Risk Link Groups (SRLGs) information is available, the calculation of an SRLG-disjoint path pair (or of a set of such paths) can protect a connection against the joint failure of the set of links in any single SRLG. Paths traversing disaster-prone regions should be disjoint, but in safe regions it may be acceptable for the paths to share links or even nodes for a quicker recovery. Auxiliary algorithms for obtaining the shortest path from a source to a destination are also presented in detail, followed by the illustrated description of Bhandari’s and Suurballe’s algorithms for obtaining a pair of paths of minimal total additive cost. These algorithms are instrumental for some of the presented schemes to determine disjoint paths for multiple failure scenarios.info:eu-repo/semantics/publishedVersio

    Spare capacity allocation using shared backup path protection for dual link failures

    Get PDF
    This paper extends the spare capacity allocation (SCA) problem from single link failure [1] to dual link failures on mesh-like IP or WDM networks. The SCA problem pre-plans traffic flows with mutually disjoint one working and two backup paths using the shared backup path protection (SBPP) scheme. The aggregated spare provision matrix (SPM) is used to capture the spare capacity sharing for dual link failures. Comparing to a previous work by He and Somani [2], this method has better scalability and flexibility. The SCA problem is formulated in a non-linear integer programming model and partitioned into two sequential linear sub-models: one finds all primary backup paths first, and the other finds all secondary backup paths next. The results on five networks show that the network redundancy using dedicated 1+1+1 is in the range of 313-400%. It drops to 96-181% in 1:1:1 without loss of dual-link resiliency, but with the trade-off of using the complicated share capacity sharing among backup paths. The hybrid 1+1:1 provides intermediate redundancy ratio at 187-310% with a moderate complexity. We also compare the passive/active approaches which consider spare capacity sharing after/during the backup path routing process. The active sharing approaches always achieve lower redundancy values than the passive ones. These reduction percentages are about 12% for 1+1:1 and 25% for 1:1:1 respectively

    Fast emergency paths schema to overcome transient link failures in ospf routing

    Full text link
    A reliable network infrastructure must be able to sustain traffic flows, even when a failure occurs and changes the network topology. During the occurrence of a failure, routing protocols, like OSPF, take from hundreds of milliseconds to various seconds in order to converge. During this convergence period, packets might traverse a longer path or even a loop. An even worse transient behaviour is that packets are dropped even though destinations are reachable. In this context, this paper describes a proactive fast rerouting approach, named Fast Emergency Paths Schema (FEP-S), to overcome problems originating from transient link failures in OSPF routing. Extensive experiments were done using several network topologies with different dimensionality degrees. Results show that the recovery paths, obtained by FEPS, are shorter than those from other rerouting approaches and can improve the network reliability by reducing the packet loss rate during the routing protocols convergence caused by a failure.Comment: 18 page

    Two heuristics for calculating a shared risk link group disjoint set of paths of min-sum cost

    Get PDF
    A shared risk link group (SRLG) is a set of links which share a common risk of failure. Routing protocols in Generalized MultiProtocol Label Switching, using distributed SRLG information, can calculate paths avoiding certain SRLGs. For single SRLG failure an end-to-end SRLG-disjoint path pair can be calculated, but to ensure connection in the event of multiple SRLG failures a set with more than two end-to-end SRLG-disjoint paths should be used. Two heuristic, the Conflicting SRLG-Exclusion Min Sum (CoSE-MS) and the Iterative Modified Suurballes’s Heuristic (IMSH), for calculating node and SRLG-disjoint path pairs, which use the Modified Suurballes’s Heuristic, are reviewed and new versions (CoSE-MScd and IMSHd) are proposed, which may improve the number of obtained optimal solutions. Moreover two new heuristics are proposed: kCoSE-MScd and kIMSHd, to calculate a set of k node and SRLG-disjoint paths, seeking to minimize its total cost. To the best of our knowledge these heuristics are a first proposal for seeking a set of k ðk[2Þ node and SRLG-disjoint paths of minimal additive cost. The performance of the proposed heuristics is evaluated using a real network structure, where SRLGs were randomly defined. The number of solutions found, the percentage of optimal solutions and the relative error of the sub-optimal solutions are presented. Also the CPU time for solving the problem in a path computation element is reported

    Constructing minimal cost/minimal SRLG spanning trees Over optical networks - An exact approach

    Get PDF
    The construction of overlay or broadcast networks, based on spanning trees, over WDM optical networks with SRLG information has important applications in telecommunications. In this paper we propose a bicriteria optimisation model for calculating communication spanning trees over WDM networks the objectives of which are the minimisation of the total number of different SRLGs of the tree links (seeking to maximise reliability) and the minimisation of the total bandwidth usage cost. An exact algorithm for generating the whole set of non-dominated solutions and methods for selecting a final solution in various decision environments, are put forward. An extensive experimental study on the application of the model, including two sets of experiments based on reference transport network topologies, with random link bandwidth occupations and with random SRLG assignments to the links, is also presented, together with a discussion on potential advantages of the model

    An Algorithm for Enumerating SRLG Diverse Path Pairs, Journal of Telecommunications and Information Technology, 2010, nr 3

    Get PDF
    Telecommunication networks are intrinsically multi-layered, a single failure at a lower level usually corresponds to a multi-failure scenario at an upper layer. In this context, the concept of shared risk link group (SRLG) allows an upper layer to select, for a given active path (AP), a backup path (BP), which avoids every SRLG that may involve the selected AP, in the event of a failure. That is a SRLG diverse path set maybe defined as a set of paths, between an origin and a destination, such that no pair of paths can be simultaneously affected by any given failure (or risk) in a single failure scenario. Firstly we present the formulation of the SRLG diverse path pair calculation problem in a directed network. An algorithm for enumerating SRLG diverse paths, by non decreasing cost of their total (additive) cost will be presented, which is based on an algorithm proposed for generating minimal cost node disjoint path pairs. The SRLG diverse path pairs may be node or arc disjoint, with or without length constraints. Computational results will be presented to show the efficiency of the proposed algorithm for obtaining node or arc disjoint SRLG diverse path pairs in undirected networks

    Journal of Telecommunications and Information Technology, 2010, nr 3

    Get PDF
    kwartalni

    Service level agreement framework for differentiated survivability in GMPLS-based IP-over-optical networks

    Get PDF
    In the next generation optical internet, GMPLS based IP-over-optical networks, ISPs will be required to support a wide variety of applications each having their own requirements. These requirements are contracted by means of the SLA. This paper describes a recovery framework that may be included in the SLA contract between ISP and customers in order to provide the required level of survivability. A key concern with such a recovery framework is how to present the different survivability alternatives including recovery techniques, failure scenario and layered integration into a transparent manner for customers. In this paper, two issues are investigated. First, the performance of the recovery framework when applying a proposed mapping procedure as an admission control mechanism in the edge router considering a smart-edge simple-core GMPLS-based IP/WDM network is considered. The second issue pertains to the performance of a pre-allocated restoration and its ability to provide protected connections under different failure scenarios
    • 

    corecore