93 research outputs found

    External multi-modal imaging sensor calibration for sensor fusion: A review

    Get PDF
    Multi-modal data fusion has gained popularity due to its diverse applications, leading to an increased demand for external sensor calibration. Despite several proven calibration solutions, they fail to fully satisfy all the evaluation criteria, including accuracy, automation, and robustness. Thus, this review aims to contribute to this growing field by examining recent research on multi-modal imaging sensor calibration and proposing future research directions. The literature review comprehensively explains the various characteristics and conditions of different multi-modal external calibration methods, including traditional motion-based calibration and feature-based calibration. Target-based calibration and targetless calibration are two types of feature-based calibration, which are discussed in detail. Furthermore, the paper highlights systematic calibration as an emerging research direction. Finally, this review concludes crucial factors for evaluating calibration methods and provides a comprehensive discussion on their applications, with the aim of providing valuable insights to guide future research directions. Future research should focus primarily on the capability of online targetless calibration and systematic multi-modal sensor calibration.Ministerio de Ciencia, Innovación y Universidades | Ref. PID2019-108816RB-I0

    Initialization of 3D Pose Graph Optimization using Lagrangian duality

    Get PDF
    Pose Graph Optimization (PGO) is the de facto choice to solve the trajectory of an agent in Simultaneous Localization and Mapping (SLAM). The Maximum Likelihood Estimation (MLE) for PGO is a non-convex problem for which no known technique is able to guarantee a globally optimal solution under general conditions. In recent years, Lagrangian duality has proved suitable to provide good, frequently tight relaxations of the hard PGO problem through convex Semidefinite Programming (SDP). In this work, we build from the state-of-the-art Lagrangian relaxation [1] and contribute a complete recovery procedure that, given the (tractable) optimal solution of the relaxation, provides either the optimal MLE solution if the relaxation is tight, or a remarkably good feasible guess if the relaxation is non-tight, which occurs in specially challenging PGO problems (very noisy observations, low graph connectivity, etc.). In the latter case, when used for initialization of local iterative methods, our approach outperforms other state-ofthe- art approaches converging to better solutions. We support our claims with extensive experiments.University of Malaga travel grant, the Spanish grant program FPU14/06098 and the project PROMOVE (DPI2014-55826-R), funded by the Spanish Government and the "European Regional Development Fund". Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    • …
    corecore