5,236 research outputs found

    A Minimal Set of Shannon-type Inequalities for Functional Dependence Structures

    Full text link
    The minimal set of Shannon-type inequalities (referred to as elemental inequalities), plays a central role in determining whether a given inequality is Shannon-type. Often, there arises a situation where one needs to check whether a given inequality is a constrained Shannon-type inequality. Another important application of elemental inequalities is to formulate and compute the Shannon outer bound for multi-source multi-sink network coding capacity. Under this formulation, it is the region of feasible source rates subject to the elemental inequalities and network coding constraints that is of interest. Hence it is of fundamental interest to identify the redundancies induced amongst elemental inequalities when given a set of functional dependence constraints. In this paper, we characterize a minimal set of Shannon-type inequalities when functional dependence constraints are present.Comment: 5 pagers, accepted ISIT201

    The Inflation Technique for Causal Inference with Latent Variables

    Full text link
    The problem of causal inference is to determine if a given probability distribution on observed variables is compatible with some causal structure. The difficult case is when the causal structure includes latent variables. We here introduce the inflation technique\textit{inflation technique} for tackling this problem. An inflation of a causal structure is a new causal structure that can contain multiple copies of each of the original variables, but where the ancestry of each copy mirrors that of the original. To every distribution of the observed variables that is compatible with the original causal structure, we assign a family of marginal distributions on certain subsets of the copies that are compatible with the inflated causal structure. It follows that compatibility constraints for the inflation can be translated into compatibility constraints for the original causal structure. Even if the constraints at the level of inflation are weak, such as observable statistical independences implied by disjoint causal ancestry, the translated constraints can be strong. We apply this method to derive new inequalities whose violation by a distribution witnesses that distribution's incompatibility with the causal structure (of which Bell inequalities and Pearl's instrumental inequality are prominent examples). We describe an algorithm for deriving all such inequalities for the original causal structure that follow from ancestral independences in the inflation. For three observed binary variables with pairwise common causes, it yields inequalities that are stronger in at least some aspects than those obtainable by existing methods. We also describe an algorithm that derives a weaker set of inequalities but is more efficient. Finally, we discuss which inflations are such that the inequalities one obtains from them remain valid even for quantum (and post-quantum) generalizations of the notion of a causal model.Comment: Minor final corrections, updated to match the published version as closely as possibl

    Geometric inequalities on Heisenberg groups

    Get PDF
    We establish geometric inequalities in the sub-Riemannian setting of the Heisenberg group Hn\mathbb H^n. Our results include a natural sub-Riemannian version of the celebrated curvature-dimension condition of Lott-Villani and Sturm and also a geodesic version of the Borell-Brascamp-Lieb inequality akin to the one obtained by Cordero-Erausquin, McCann and Schmuckenschl\"ager. The latter statement implies sub-Riemannian versions of the geodesic Pr\'ekopa-Leindler and Brunn-Minkowski inequalities. The proofs are based on optimal mass transportation and Riemannian approximation of Hn\mathbb H^n developed by Ambrosio and Rigot. These results refute a general point of view, according to which no geometric inequalities can be derived by optimal mass transportation on singular spaces.Comment: to appear in Calculus of Variations and Partial Differential Equations (42 pages, 1 figure

    Regularized Optimal Transport and the Rot Mover's Distance

    Full text link
    This paper presents a unified framework for smooth convex regularization of discrete optimal transport problems. In this context, the regularized optimal transport turns out to be equivalent to a matrix nearness problem with respect to Bregman divergences. Our framework thus naturally generalizes a previously proposed regularization based on the Boltzmann-Shannon entropy related to the Kullback-Leibler divergence, and solved with the Sinkhorn-Knopp algorithm. We call the regularized optimal transport distance the rot mover's distance in reference to the classical earth mover's distance. We develop two generic schemes that we respectively call the alternate scaling algorithm and the non-negative alternate scaling algorithm, to compute efficiently the regularized optimal plans depending on whether the domain of the regularizer lies within the non-negative orthant or not. These schemes are based on Dykstra's algorithm with alternate Bregman projections, and further exploit the Newton-Raphson method when applied to separable divergences. We enhance the separable case with a sparse extension to deal with high data dimensions. We also instantiate our proposed framework and discuss the inherent specificities for well-known regularizers and statistical divergences in the machine learning and information geometry communities. Finally, we demonstrate the merits of our methods with experiments using synthetic data to illustrate the effect of different regularizers and penalties on the solutions, as well as real-world data for a pattern recognition application to audio scene classification
    • …
    corecore