5,541 research outputs found

    Fair Knapsack

    Full text link
    We study the following multiagent variant of the knapsack problem. We are given a set of items, a set of voters, and a value of the budget; each item is endowed with a cost and each voter assigns to each item a certain value. The goal is to select a subset of items with the total cost not exceeding the budget, in a way that is consistent with the voters' preferences. Since the preferences of the voters over the items can vary significantly, we need a way of aggregating these preferences, in order to select the socially best valid knapsack. We study three approaches to aggregating voters' preferences, which are motivated by the literature on multiwinner elections and fair allocation. This way we introduce the concepts of individually best, diverse, and fair knapsack. We study the computational complexity (including parameterized complexity, and complexity under restricted domains) of the aforementioned multiagent variants of knapsack.Comment: Extended abstract will appear in Proc. of 33rd AAAI 201

    Sparse grid quadrature on products of spheres

    Full text link
    We examine sparse grid quadrature on weighted tensor products (WTP) of reproducing kernel Hilbert spaces on products of the unit sphere, in the case of worst case quadrature error for rules with arbitrary quadrature weights. We describe a dimension adaptive quadrature algorithm based on an algorithm of Hegland (2003), and also formulate a version of Wasilkowski and Wozniakowski's WTP algorithm (1999), here called the WW algorithm. We prove that the dimension adaptive algorithm is optimal in the sense of Dantzig (1957) and therefore no greater in cost than the WW algorithm. Both algorithms therefore have the optimal asymptotic rate of convergence given by Theorem 3 of Wasilkowski and Wozniakowski (1999). A numerical example shows that, even though the asymptotic convergence rate is optimal, if the dimension weights decay slowly enough, and the dimensionality of the problem is large enough, the initial convergence of the dimension adaptive algorithm can be slow.Comment: 34 pages, 6 figures. Accepted 7 January 2015 for publication in Numerical Algorithms. Revised at page proof stage to (1) update email address; (2) correct the accent on "Wozniakowski" on p. 7; (3) update reference 2; (4) correct references 3, 18 and 2

    Truthful Assignment without Money

    Full text link
    We study the design of truthful mechanisms that do not use payments for the generalized assignment problem (GAP) and its variants. An instance of the GAP consists of a bipartite graph with jobs on one side and machines on the other. Machines have capacities and edges have values and sizes; the goal is to construct a welfare maximizing feasible assignment. In our model of private valuations, motivated by impossibility results, the value and sizes on all job-machine pairs are public information; however, whether an edge exists or not in the bipartite graph is a job's private information. We study several variants of the GAP starting with matching. For the unweighted version, we give an optimal strategyproof mechanism; for maximum weight bipartite matching, however, we show give a 2-approximate strategyproof mechanism and show by a matching lowerbound that this is optimal. Next we study knapsack-like problems, which are APX-hard. For these problems, we develop a general LP-based technique that extends the ideas of Lavi and Swamy to reduce designing a truthful mechanism without money to designing such a mechanism for the fractional version of the problem, at a loss of a factor equal to the integrality gap in the approximation ratio. We use this technique to obtain strategyproof mechanisms with constant approximation ratios for these problems. We then design an O(log n)-approximate strategyproof mechanism for the GAP by reducing, with logarithmic loss in the approximation, to our solution for the value-invariant GAP. Our technique may be of independent interest for designing truthful mechanisms without money for other LP-based problems.Comment: Extended abstract appears in the 11th ACM Conference on Electronic Commerce (EC), 201

    Coefficients of Sylvester's Denumerant

    Get PDF
    For a given sequence α=[α1,α2,…,αN+1]\mathbf{\alpha} = [\alpha_1,\alpha_2,\dots,\alpha_{N+1}] of N+1N+1 positive integers, we consider the combinatorial function E(α)(t)E(\mathbf{\alpha})(t) that counts the nonnegative integer solutions of the equation α1x1+α2x2+⋯+αNxN+αN+1xN+1=t\alpha_1x_1+\alpha_2 x_2+\cdots+\alpha_{N} x_{N}+\alpha_{N+1}x_{N+1}=t, where the right-hand side tt is a varying nonnegative integer. It is well-known that E(α)(t)E(\mathbf{\alpha})(t) is a quasi-polynomial function in the variable tt of degree NN. In combinatorial number theory this function is known as Sylvester's denumerant. Our main result is a new algorithm that, for every fixed number kk, computes in polynomial time the highest k+1k+1 coefficients of the quasi-polynomial E(α)(t)E(\mathbf{\alpha})(t) as step polynomials of tt (a simpler and more explicit representation). Our algorithm is a consequence of a nice poset structure on the poles of the associated rational generating function for E(α)(t)E(\mathbf{\alpha})(t) and the geometric reinterpretation of some rational generating functions in terms of lattice points in polyhedral cones. Our algorithm also uses Barvinok's fundamental fast decomposition of a polyhedral cone into unimodular cones. This paper also presents a simple algorithm to predict the first non-constant coefficient and concludes with a report of several computational experiments using an implementation of our algorithm in LattE integrale. We compare it with various Maple programs for partial or full computation of the denumerant.Comment: minor revision, 28 page

    Knapsack Problems in Groups

    Full text link
    We generalize the classical knapsack and subset sum problems to arbitrary groups and study the computational complexity of these new problems. We show that these problems, as well as the bounded submonoid membership problem, are P-time decidable in hyperbolic groups and give various examples of finitely presented groups where the subset sum problem is NP-complete.Comment: 28 pages, 12 figure
    • …
    corecore