246 research outputs found

    Disposable sensors in diagnostics, food and environmental monitoring

    Get PDF
    Disposable sensors are low‐cost and easy‐to‐use sensing devices intended for short‐term or rapid single‐point measurements. The growing demand for fast, accessible, and reliable information in a vastly connected world makes disposable sensors increasingly important. The areas of application for such devices are numerous, ranging from pharmaceutical, agricultural, environmental, forensic, and food sciences to wearables and clinical diagnostics, especially in resource‐limited settings. The capabilities of disposable sensors can extend beyond measuring traditional physical quantities (for example, temperature or pressure); they can provide critical chemical and biological information (chemo‐ and biosensors) that can be digitized and made available to users and centralized/decentralized facilities for data storage, remotely. These features could pave the way for new classes of low‐cost systems for health, food, and environmental monitoring that can democratize sensing across the globe. Here, a brief insight into the materials and basics of sensors (methods of transduction, molecular recognition, and amplification) is provided followed by a comprehensive and critical overview of the disposable sensors currently used for medical diagnostics, food, and environmental analysis. Finally, views on how the field of disposable sensing devices will continue its evolution are discussed, including the future trends, challenges, and opportunities

    A CMOS Smart Temperature and Humidity Sensor with Combined Readout.

    Get PDF
    A fully-integrated complementary metal-oxide semiconductor (CMOS) sensor for combined temperature and humidity measurements is presented. The main purpose of the device is to monitor the hermeticity of micro-packages for implanted integrated circuits and to ensure their safe operation by monitoring the operating temperature and humidity on-chip. The smart sensor has two modes of operation, in which either the temperature or humidity is converted into a digital code representing a frequency ratio between two oscillators. This ratio is determined by the ratios of the timing capacitances and bias currents in both oscillators. The reference oscillator is biased by a current whose temperature dependency is complementary to the proportional to absolute temperature (PTAT) current. For the temperature measurement, this results in an exceptional normalized sensitivity of about 0.77%/°C at the accepted expense of reduced linearity. The humidity sensor is a capacitor, whose value varies linearly with relative humidity (RH) with a normalized sensitivity of 0.055%/% RH. For comparison, two versions of the humidity sensor with an area of either 0.2 mm2 or 1.2 mm2 were fabricated in a commercial 0.18 μm CMOS process. The on-chip readout electronics operate from a 5 V power supply and consume a current of approximately 85 µA

    CMOS Image Sensors in Surveillance System Applications

    Get PDF
    Recent technology advances in CMOS image sensors (CIS) enable their utilization in the most demanding of surveillance fields, especially visual surveillance and intrusion detection in intelligent surveillance systems, aerial surveillance in war zones, Earth environmental surveillance by satellites in space monitoring, agricultural monitoring using wireless sensor networks and internet of things and driver assistance in automotive fields. This paper presents an overview of CMOS image sensor-based surveillance applications over the last decade by tabulating the design characteristics related to image quality such as resolution, frame rate, dynamic range, signal-to-noise ratio, and also processing technology. Different models of CMOS image sensors used in all applications have been surveyed and tabulated for every year and application.https://doi.org/10.3390/s2102048

    Signal Enhancement Strategies in Classical Electrochemiluminescence Techniques for Modern Biosensing

    Get PDF
    With the ascent of IT, and since Ashton has invented the term Internet of Things (IoT) in 1999, this future idea of connected machines that can do tasks and perform decision-control cycles without human input has become more and more attractive and is today an established future scenario. Obviously, in an IoT, “sensors for everything” are one crucial corner stone of its existence and Analytical chemistry can and must deliver them. While many challenges towards a functioning IoT remain, we are on the verge of its beginning. This can be also seen with “Analytics 4.0” in research and on the market, tending to more IT-connected, portable, easier-controllable and integrated solutions. The entrance of mobility in the health sector or Point-of-Care (POC) diagnostics trends are alike influencing biosensing. Whether in mobile solutions or lab- and clinical environments, versatile, powerful and easy-to-adapt detection strategies like Electrochemiluminescence (ECL) are an attractive option. The ECL molecules [Ru(bpy)3]2+ and luminol represent the most prominent and most abundantly investigated luminophores for ECL since Bard’s accomplishment to make ECL a well-known technique. Because both are also two of the most efficient ECL emitters that can be well-handled in bioanalysis, and are available on the market, they are still today frequently used in research and also commercial applications. To cope with current benchmarks of sensitive detection, however a combination with a certain signal enhancement strategy is recommended. Several different routes can here be employed and one option is dendrimers. PAMAM dendrimers can function as ECL coreactant in [Ru(bpy)3]2+-ECL via their amino groups and at the same time expose primary amino groups as possible bioconjugation elements. Exploring this multi-functionality of the dendrimers was investigated here. This was done on a model system employing PAMAM dendrimers with [Ru(bpy)3]2+-ECL together with biotin/streptavidin as biorecognition element and analyte, respectively. The dendrimer’s bi-functionality was successfully proven and a joint-role of a biorecognition element and a possible reporter function suggests an optimum application in homogeneous assays. A different toolset for ECL signal enhancement is offered by liposomes. Numerous signaling molecules can be encapsulated inside the inner cavity of these synthetic vesicles, while they provide protection from the environment and connection-functionality to probes via lipids and surface groups on the outside. That application was here explored, together with a newly synthesized luminol derivative obtained by a simple synthesis route from commercial starting materials and exhibiting a four times increased ECL efficiency versus standard luminol. That was necessary as a liposome enhancement was denied for the standard luminol through its poor aqueous solubility. The new m-carboxy luminol considerably improved this feature which allowed its own encapsulation in liposomes. The superior signal generation with this dual system was proven in a model sandwich hybridization assay which yielded a 150-times better detection performance than the equal fluorescence-based assay while being almost zero affected through matrices like serum, soil or river water. As such the good performance of luminol ECL together with liposomes for highly sensitive detection applications was demonstrated. A further necessary element with liposomal amplification, are surfactants to set free the signaling molecules. However, this case depicts only one example of a multitude of applications of surfactants in bioassays and biochemical methods. Hence, surfactants are commonly present solution constituents which also have to be considered in general with ECL because they can influence the ECL signals positively or negatively. This was further investigated for luminol ECL by exploring the effect of 13 different surfactants on the luminol ECL efficiency on four different electrode materials. A deeper understanding of the distinct effects was obtained by looking into ECL emission behavior, electrochemical effects, the surfaces and Chemiluminescence effects. After all, the revelation of a complicated mechanism that involves many contributing factors and as such directs signal quenching or enhancement is an important finding for assay design. In this way, the selection of a suitable surfactant is possible to exploit maximum reachable signal efficiencies. A combination of signal enhancement tools like a better ECL molecule derivative, dendrimers, liposomes or surfactants has proven to boost the ECL performance considerably. A further means of signal enhancement is offered via miniaturization, which also makes the detection method better suited towards common application as liquid handling and easier automation are on hand. This can be used for single ECL assays or combinations of different ECL reagents in one system for multi-detection. Different strategies for the miniaturization of an ECL readout-capable system were investigated, taking requirements for [Ru(bpy)3]2+ and luminol as ECL reporters into account. This includes materials, electrochemical demands and simple design. Here, ITO electrodes – while advantageous for luminol ECL could not convince with their performance in [Ru(bpy)3]2+-ECL. Alternatively, laser scribed graphene electrodes have shown to be promising candidates for a future miniaturized system encompassing both, luminol and [Ru(bpy)3]2+ as ECL systems. Ultimately, the different signal amplifying strategies, investigated in this work that can be applied standalone or combined, offer a great toolset for state-of-the-art ECL detection applications in research and also for possible commercial applications

    IoT Applications Computing

    Get PDF
    The evolution of emerging and innovative technologies based on Industry 4.0 concepts are transforming society and industry into a fully digitized and networked globe. Sensing, communications, and computing embedded with ambient intelligence are at the heart of the Internet of Things (IoT), the Industrial Internet of Things (IIoT), and Industry 4.0 technologies with expanding applications in manufacturing, transportation, health, building automation, agriculture, and the environment. It is expected that the emerging technology clusters of ambient intelligence computing will not only transform modern industry but also advance societal health and wellness, as well as and make the environment more sustainable. This book uses an interdisciplinary approach to explain the complex issue of scientific and technological innovations largely based on intelligent computing

    Service robotics and machine learning for close-range remote sensing

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore