66,847 research outputs found

    Application-Oriented Flow Control: Fundamentals, Algorithms and Fairness

    Get PDF
    This paper is concerned with flow control and resource allocation problems in computer networks in which real-time applications may have hard quality of service (QoS) requirements. Recent optimal flow control approaches are unable to deal with these problems since QoS utility functions generally do not satisfy the strict concavity condition in real-time applications. For elastic traffic, we show that bandwidth allocations using the existing optimal flow control strategy can be quite unfair. If we consider different QoS requirements among network users, it may be undesirable to allocate bandwidth simply according to the traditional max-min fairness or proportional fairness. Instead, a network should have the ability to allocate bandwidth resources to various users, addressing their real utility requirements. For these reasons, this paper proposes a new distributed flow control algorithm for multiservice networks, where the application's utility is only assumed to be continuously increasing over the available bandwidth. In this, we show that the algorithm converges, and that at convergence, the utility achieved by each application is well balanced in a proportionally (or max-min) fair manner

    Power allocation in wireless multi-user relay networks

    Get PDF
    In this paper, we consider an amplify-and-forward wireless relay system where multiple source nodes communicate with their corresponding destination nodes with the help of relay nodes. Conventionally, each relay equally distributes the available resources to its relayed sources. This approach is clearly sub-optimal since each user experiences dissimilar channel conditions, and thus, demands different amount of allocated resources to meet its quality-of-service (QoS) request. Therefore, this paper presents novel power allocation schemes to i) maximize the minimum signal-to-noise ratio among all users; ii) minimize the maximum transmit power over all sources; iii) maximize the network throughput. Moreover, due to limited power, it may be impossible to satisfy the QoS requirement for every user. Consequently, an admission control algorithm should first be carried out to maximize the number of users possibly served. Then, optimal power allocation is performed. Although the joint optimal admission control and power allocation problem is combinatorially hard, we develop an effective heuristic algorithm with significantly reduced complexity. Even though theoretically sub-optimal, it performs remarkably well. The proposed power allocation problems are formulated using geometric programming (GP), a well-studied class of nonlinear and nonconvex optimization. Since a GP problem is readily transformed into an equivalent convex optimization problem, optimal solution can be obtained efficiently. Numerical results demonstrate the effectiveness of our proposed approach

    A Utility Proportional Fairness Radio Resource Block Allocation in Cellular Networks

    Full text link
    This paper presents a radio resource block allocation optimization problem for cellular communications systems with users running delay-tolerant and real-time applications, generating elastic and inelastic traffic on the network and being modelled as logarithmic and sigmoidal utilities respectively. The optimization is cast under a utility proportional fairness framework aiming at maximizing the cellular systems utility whilst allocating users the resource blocks with an eye on application quality of service requirements and on the procedural temporal and computational efficiency. Ultimately, the sensitivity of the proposed modus operandi to the resource variations is investigated

    Allocation of Heterogeneous Resources of an IoT Device to Flexible Services

    Full text link
    Internet of Things (IoT) devices can be equipped with multiple heterogeneous network interfaces. An overwhelmingly large amount of services may demand some or all of these interfaces' available resources. Herein, we present a precise mathematical formulation of assigning services to interfaces with heterogeneous resources in one or more rounds. For reasonable instance sizes, the presented formulation produces optimal solutions for this computationally hard problem. We prove the NP-Completeness of the problem and develop two algorithms to approximate the optimal solution for big instance sizes. The first algorithm allocates the most demanding service requirements first, considering the average cost of interfaces resources. The second one calculates the demanding resource shares and allocates the most demanding of them first by choosing randomly among equally demanding shares. Finally, we provide simulation results giving insight into services splitting over different interfaces for both cases.Comment: IEEE Internet of Things Journa

    A Game-Theoretic Approach to Energy-Efficient Resource Allocation in Device-to-Device Underlay Communications

    Full text link
    Despite the numerous benefits brought by Device-to-Device (D2D) communications, the introduction of D2D into cellular networks poses many new challenges in the resource allocation design due to the co-channel interference caused by spectrum reuse and limited battery life of User Equipments (UEs). Most of the previous studies mainly focus on how to maximize the Spectral Efficiency (SE) and ignore the energy consumption of UEs. In this paper, we study how to maximize each UE's Energy Efficiency (EE) in an interference-limited environment subject to its specific Quality of Service (QoS) and maximum transmission power constraints. We model the resource allocation problem as a noncooperative game, in which each player is self-interested and wants to maximize its own EE. A distributed interference-aware energy-efficient resource allocation algorithm is proposed by exploiting the properties of the nonlinear fractional programming. We prove that the optimum solution obtained by the proposed algorithm is the Nash equilibrium of the noncooperative game. We also analyze the tradeoff between EE and SE and derive closed-form expressions for EE and SE gaps.Comment: submitted to IET Communications. arXiv admin note: substantial text overlap with arXiv:1405.1963, arXiv:1407.155
    corecore