7,426 research outputs found

    Transparent Dynamic reconfiguration for CORBA

    Get PDF
    Distributed systems with high availability requirements have to support some form of dynamic reconfiguration. This means that they must provide the ability to be maintained or upgraded without being taken off-line. Building a distributed system that allows dynamic reconfiguration is very intrusive to the overall design of the system, and generally requires special skills from both the client and server side application developers. There is an opportunity to provide support for dynamic reconfiguration at the object middleware level of distributed systems, and create a dynamic reconfiguration transparency to application developers. We propose a Dynamic Reconfiguration Service for CORBA that allows the reconfiguration of a running system with maximum transparency for both client and server side developers. We describe the architecture, a prototype implementation, and some preliminary test result

    The role of the service concept in model-driven applications development

    Get PDF
    This paper identifies two paradigms that have influenced the design of distributed applications: the middleware-centred and the protocol-centred paradigm, and proposes a combined use of these two paradigms. This combined use incorporates major benefits from both paradigms: the ability to reuse middleware infrastructures and the ability to treat distributed coordination aspects as a separate object of design through the use of the service concept. A careful consideration of the service concept, and its recursive application, allows us to define an appropriate and precise notion of platform-independence that suits the needs of model-driven middleware application development

    On the Notion of Abstract Platform in MDA Development

    Get PDF
    Although platform-independence is a central property in MDA models, the study of platform-independence has been largely overlooked in MDA. As a consequence, there is a lack of guidelines to select abstraction criteria and modelling concepts for platform-independent design. In addition, there is little methodological support to distinguish between platform-independent and platform-specific concerns, which could be detrimental to the beneficial exploitation of the PIM-PSM separation-of-concerns adopted by MDA. This work is an attempt towards clarifying the notion of platform-independent modelling in MDA development. We argue that each level of platform-independence must be accompanied by the identification of an abstract platform. An abstract platform is determined by the platform characteristics that are relevant for applications at a certain level of platform-independence, and must be established by balancing various design goals. We present some methodological principles for abstract platform design, which forms a basis for defining requirements for design languages intended to support platform-independent design. Since our methodological framework is based on the notion of abstract platform, we pay particular attention to the definition of abstract platforms and the language requirements to specify abstract platforms. We discuss how the concept of abstract platform relates to UML

    Interaction systems design and the protocol- and middleware-centred paradigms in distributed application development

    Get PDF
    This paper aims at demonstrating the benefits and importance of interaction systems design in the development of distributed applications. We position interaction systems design with respect to two paradigms that have influenced the design of distributed applications: the middleware-centred and the protocol-centred paradigm. We argue that interaction systems that support application-level interactions should be explicitly designed, using the externally observable behaviour of the interaction system as a starting point in interaction systems design. This practice has two main benefits: to promote a systematic design method, in which the correctness of the design of an interaction system can be assessed against its service specification; and, to shield the design of application parts that use the interaction system from choices in the design of the supporting interaction system

    The role of the RM-ODP computational viewpoint concepts in the MDA approach

    Get PDF
    An MDA design approach should be able to accommodate designs at different levels of platform-independence. We have proposed a design approach previously (in [2]), which allows these levels to be identified. An important feature of this approach is the notion of abstract platform. An abstract platform is determined by the platform characteristics that are relevant for applications at a certain level of platform-independence, and must be established by considering various design goals. In this paper, we define a framework that makes it possible to use RM-ODP concepts in our MDA design approach. This framework allows a recursive application of the computational viewpoint at different levels of platform-independence. This is obtained by equating the RM-ODP notion of infrastructure to our notion of abstract platform

    Ontology-based collaborative framework for disaster recovery scenarios

    Full text link
    This paper aims at designing of adaptive framework for supporting collaborative work of different actors in public safety and disaster recovery missions. In such scenarios, firemen and robots interact to each other to reach a common goal; firemen team is equipped with smart devices and robots team is supplied with communication technologies, and should carry on specific tasks. Here, reliable connection is mandatory to ensure the interaction between actors. But wireless access network and communication resources are vulnerable in the event of a sudden unexpected change in the environment. Also, the continuous change in the mission requirements such as inclusion/exclusion of new actor, changing the actor's priority and the limitations of smart devices need to be monitored. To perform dynamically in such case, the presented framework is based on a generic multi-level modeling approach that ensures adaptation handled by semantic modeling. Automated self-configuration is driven by rule-based reconfiguration policies through ontology

    A Model-based transformation process to validate and implement high-integrity systems

    Get PDF
    Despite numerous advances, building High-Integrity Embedded systems remains a complex task. They come with strong requirements to ensure safety, schedulability or security properties; one needs to combine multiple analysis to validate each of them. Model-Based Engineering is an accepted solution to address such complexity: analytical models are derived from an abstraction of the system to be built. Yet, ensuring that all abstractions are semantically consistent, remains an issue, e.g. when performing model checking for assessing safety, and then for schedulability using timed automata, and then when generating code. Complexity stems from the high-level view of the model compared to the low-level mechanisms used. In this paper, we present our approach based on AADL and its behavioral annex to refine iteratively an architecture description. Both application and runtime components are transformed into basic AADL constructs which have a strict counterpart in classical programming languages or patterns for verification. We detail the benefits of this process to enhance analysis and code generation. This work has been integrated to the AADL-tool support OSATE2
    • 

    corecore