2,764 research outputs found

    Ontology-based collaborative framework for disaster recovery scenarios

    Full text link
    This paper aims at designing of adaptive framework for supporting collaborative work of different actors in public safety and disaster recovery missions. In such scenarios, firemen and robots interact to each other to reach a common goal; firemen team is equipped with smart devices and robots team is supplied with communication technologies, and should carry on specific tasks. Here, reliable connection is mandatory to ensure the interaction between actors. But wireless access network and communication resources are vulnerable in the event of a sudden unexpected change in the environment. Also, the continuous change in the mission requirements such as inclusion/exclusion of new actor, changing the actor's priority and the limitations of smart devices need to be monitored. To perform dynamically in such case, the presented framework is based on a generic multi-level modeling approach that ensures adaptation handled by semantic modeling. Automated self-configuration is driven by rule-based reconfiguration policies through ontology

    Garnet: a middleware architecture for distributing data streams originating in wireless sensor networks

    Get PDF
    We present an architectural framework, Garnet, which provides a data stream centric abstraction to encourage the manipulation and exploitation of data generated in sensor networks. By providing middleware services to allow mutually-unaware applications to manipulate sensor behaviour, a scalable, extensible platform is provided. We focus on sensor networks with transmit and receive capabilities as this combination poses greater challenges for managing and distributing sensed data. Our approach allows simple and sophisticated sensors to coexist, and allows data consumers to be mutually unaware of each other This also promotes the use of middleware services to mediate among consumers with potentially conflicting demands for shared data. Garnet has been implemented in Java, and we report on our progress to date and outline some likely scenarios where the use of our distributed architecture and accompanying middleware support enhances the task of sharing data in sensor network environments

    Forum Session at the First International Conference on Service Oriented Computing (ICSOC03)

    Get PDF
    The First International Conference on Service Oriented Computing (ICSOC) was held in Trento, December 15-18, 2003. The focus of the conference ---Service Oriented Computing (SOC)--- is the new emerging paradigm for distributed computing and e-business processing that has evolved from object-oriented and component computing to enable building agile networks of collaborating business applications distributed within and across organizational boundaries. Of the 181 papers submitted to the ICSOC conference, 10 were selected for the forum session which took place on December the 16th, 2003. The papers were chosen based on their technical quality, originality, relevance to SOC and for their nature of being best suited for a poster presentation or a demonstration. This technical report contains the 10 papers presented during the forum session at the ICSOC conference. In particular, the last two papers in the report ere submitted as industrial papers

    A make/buy/reuse feature development framework for product line evolution

    Get PDF

    Model-Driven Productivity Evaluation for Self-Adaptive Context-Oriented Software Development

    Get PDF
    Anticipating context changes using a model-based approach requires a formal procedure for analysing and mod- elling their context-dependent functionality, and a stable descrip- tion of the architecture which supports dynamic decision-making and architecture evolution. This article demonstrates the capabil- ities of the context-oriented component-based application-model- driven architecture (COCA-MDA) to support the development of self-adaptive applications; we describe a state-of-the-art case study and evaluate the development effort involved in adopting the COCA-MDA in constructing the application. An intensive analysis of the application requirements simplified the process of modelling the application’s behavioural model; therefore, instead of modelling several variation models, the developers modelled an extra-functionality model. COCA-MDA reduces the development effort because it maintains a clear separation of concerns and em- ploys a decomposition mechanism to produce a context-oriented component model which decouples the applications’ core func- tionality from the context-dependent functionality. Estimating the MDA approach’s productivity can help the software developers to select the best MDA-based methodology from the available solutions proposed in the literature. Thus, counting the source line of code is not adequate for evaluating the development effort of the MDA-based methodology. Quantifying the maintenance adjustment factor of the new, adapted, and reused code is a better estimate of the development effort of the MDA approaches

    A Case Study on Formal Verification of Self-Adaptive Behaviors in a Decentralized System

    Full text link
    Self-adaptation is a promising approach to manage the complexity of modern software systems. A self-adaptive system is able to adapt autonomously to internal dynamics and changing conditions in the environment to achieve particular quality goals. Our particular interest is in decentralized self-adaptive systems, in which central control of adaptation is not an option. One important challenge in self-adaptive systems, in particular those with decentralized control of adaptation, is to provide guarantees about the intended runtime qualities. In this paper, we present a case study in which we use model checking to verify behavioral properties of a decentralized self-adaptive system. Concretely, we contribute with a formalized architecture model of a decentralized traffic monitoring system and prove a number of self-adaptation properties for flexibility and robustness. To model the main processes in the system we use timed automata, and for the specification of the required properties we use timed computation tree logic. We use the Uppaal tool to specify the system and verify the flexibility and robustness properties.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432

    Context-aware Authorization in Highly Dynamic Environments

    Get PDF
    Highly dynamic computing environments, like ubiquitous and pervasive computing environments, require frequent adaptation of applications. Context is a key to adapt suiting user needs. On the other hand, standard access control trusts users once they have authenticated, despite the fact that they may reach unauthorized contexts. We analyse how taking into account dynamic information like context in the authorization subsystem can improve security, and how this new access control applies to interaction patterns, like messaging or eventing. We experiment and validate our approach using context as an authorization factor for eventing in Web service for device (like UPnP or DPWS), in smart home security

    Productivity Evaluation of Self-Adaptive Software Model Driven Architecture

    Get PDF
    Anticipating context changes using a model-based approach requires a formal procedure for analysing and modelling context-dependent functionality and stable description of the architecture which supports dynamic decision-making and architecture evolution. This article demonstrates the capabilities of the context-oriented component-based application-model-driven architecture (COCA-MDA) to support the development of self- adaptive applications; the authors describe a state-of-the-art case study and evaluate the development effort involved in adopting the COCA-MDA in constructing the application. An intensive analysis of the applica- tion requirements simplified the process of modelling the application’s behavioural model; therefore, instead of modelling several variation models, the developers modelled an extra-functionality model. COCA-MDA reduces the development effort because it maintains a clear separation of concerns and employs a decom- position mechanism to produce a context-oriented component model which decouples the applications’ core functionality from the context-dependent functionality. Estimating the MDA approach’s productivity can help the software developers select the best MDA-based methodology from the available solutions. Thus, counting the source line of code is not adequate for evaluating the development effort of the MDA-based methodology. Quantifying the maintenance adjustment factor of the new, adapted, and reused code is a better estimate of the development effort of the MDA approaches
    • …
    corecore