5,927 research outputs found

    Middleware for Wireless Sensor Networks: An Outlook

    Get PDF
    In modern distributed computing, applications are rarely built directly atop operating system facilities, e.g., sockets. Higher-level middleware abstractions and systems are often employed to simplify the programmer’s chore or to achieve interoperability. In contrast, real-world wireless sensor network (WSN) applications are almost always developed by relying directly on the operating system. Why is this the case? Does it make sense to include a middleware layer in the design of WSNs? And, if so, is it the same kind of software system as in traditional distributed computing? What are the fundamental concepts, reasonable assumptions, and key criteria guiding its design? What are the main open research challenges, and the potential pitfalls? Most importantly, is it worth pursuing research in this field? This paper provides a (biased) answer to these and other research questions, preceded by a brief account on the state of the art in the field

    Combined Coverage Area Reporting and Geographical Routing in Wireless Sensor-Actuator Networks for Cooperating with Unmanned Aerial Vehicles

    Get PDF
    In wireless sensor network (WSN) applications with multiple gateways, it is key to route location dependent subscriptions efficiently at two levels in the system. At the gateway level, data sinks must not waste the energy of the WSN by injecting subscriptions that are not relevant for the nodes in their coverage area and at WSN level, energy-efficient delivery of subscriptions to target areas is required. In this paper, we propose a mechanism in which (1) the WSN provides an accurate and up-to-date coverage area description to gateways and (2) the wireless sensor network re-uses the collected coverage area information to enable efficient geographical routing of location dependent subscriptions and other messages. The latter has a focus on routing of messages injected from sink nodes to nodes in the region of interest. Our proposed mechanisms are evaluated in simulation

    A Distributed Sensor Data Search Platform for Internet of Things Environments

    Get PDF
    Recently, the number of devices has grown increasingly and it is hoped that, between 2015 and 2016, 20 billion devices will be connected to the Internet and this market will move around 91.5 billion dollars. The Internet of Things (IoT) is composed of small sensors and actuators embedded in objects with Internet access and will play a key role in solving many challenges faced in today's society. However, the real capacity of IoT concepts is constrained as the current sensor networks usually do not exchange information with other sources. In this paper, we propose the Visual Search for Internet of Things (ViSIoT) platform to help technical and non-technical users to discover and use sensors as a service for different application purposes. As a proof of concept, a real case study is used to generate weather condition reports to support rheumatism patients. This case study was executed in a working prototype and a performance evaluation is presented.Comment: International Journal of Services Computing (ISSN 2330-4472) Vol. 4, No.1, January - March, 201

    A Resource Intensive Traffic-Aware Scheme for Cluster-based Energy Conservation in Wireless Devices

    Full text link
    Wireless traffic that is destined for a certain device in a network, can be exploited in order to minimize the availability and delay trade-offs, and mitigate the Energy consumption. The Energy Conservation (EC) mechanism can be node-centric by considering the traversed nodal traffic in order to prolong the network lifetime. This work describes a quantitative traffic-based approach where a clustered Sleep-Proxy mechanism takes place in order to enable each node to sleep according to the time duration of the active traffic that each node expects and experiences. Sleep-proxies within the clusters are created according to pairwise active-time comparison, where each node expects during the active periods, a requested traffic. For resource availability and recovery purposes, the caching mechanism takes place in case where the node for which the traffic is destined is not available. The proposed scheme uses Role-based nodes which are assigned to manipulate the traffic in a cluster, through the time-oriented backward difference traffic evaluation scheme. Simulation study is carried out for the proposed backward estimation scheme and the effectiveness of the end-to-end EC mechanism taking into account a number of metrics and measures for the effects while incrementing the sleep time duration under the proposed framework. Comparative simulation results show that the proposed scheme could be applied to infrastructure-less systems, providing energy-efficient resource exchange with significant minimization in the power consumption of each device.Comment: 6 pages, 8 figures, To appear in the proceedings of IEEE 14th International Conference on High Performance Computing and Communications (HPCC-2012) of the Third International Workshop on Wireless Networks and Multimedia (WNM-2012), 25-27 June 2012, Liverpool, U

    Big Data Model Simulation on a Graph Database for Surveillance in Wireless Multimedia Sensor Networks

    Full text link
    Sensors are present in various forms all around the world such as mobile phones, surveillance cameras, smart televisions, intelligent refrigerators and blood pressure monitors. Usually, most of the sensors are a part of some other system with similar sensors that compose a network. One of such networks is composed of millions of sensors connect to the Internet which is called Internet of things (IoT). With the advances in wireless communication technologies, multimedia sensors and their networks are expected to be major components in IoT. Many studies have already been done on wireless multimedia sensor networks in diverse domains like fire detection, city surveillance, early warning systems, etc. All those applications position sensor nodes and collect their data for a long time period with real-time data flow, which is considered as big data. Big data may be structured or unstructured and needs to be stored for further processing and analyzing. Analyzing multimedia big data is a challenging task requiring a high-level modeling to efficiently extract valuable information/knowledge from data. In this study, we propose a big database model based on graph database model for handling data generated by wireless multimedia sensor networks. We introduce a simulator to generate synthetic data and store and query big data using graph model as a big database. For this purpose, we evaluate the well-known graph-based NoSQL databases, Neo4j and OrientDB, and a relational database, MySQL.We have run a number of query experiments on our implemented simulator to show that which database system(s) for surveillance in wireless multimedia sensor networks is efficient and scalable

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    A Middleware for the Internet of Things

    Full text link
    The Internet of Things (IoT) connects everyday objects including a vast array of sensors, actuators, and smart devices, referred to as things to the Internet, in an intelligent and pervasive fashion. This connectivity gives rise to the possibility of using the tracking capabilities of things to impinge on the location privacy of users. Most of the existing management and location privacy protection solutions do not consider the low-cost and low-power requirements of things, or, they do not account for the heterogeneity, scalability, or autonomy of communications supported in the IoT. Moreover, these traditional solutions do not consider the case where a user wishes to control the granularity of the disclosed information based on the context of their use (e.g. based on the time or the current location of the user). To fill this gap, a middleware, referred to as the Internet of Things Management Platform (IoT-MP) is proposed in this paper.Comment: 20 pages, International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 201

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings
    corecore