525 research outputs found

    Analytical method to estimate the complex permittivity of oil samples

    Get PDF
    In this paper, an analytical method to estimate the complex dielectric constant of liquids is presented. The method is based on the measurement of the transmission coefficient in an embedded microstrip line loaded with a complementary split ring resonator (CSRR), which is etched in the ground plane. From this response, the dielectric constant and loss tangent of the liquid under test (LUT) can be extracted, provided that the CSRR is surrounded by such LUT, and the liquid level extends beyond the region where the electromagnetic fields generated by the CSRR are present. For that purpose, a liquid container acting as a pool is added to the structure. The main advantage of this method, which is validated from the measurement of the complex dielectric constant of olive and castor oil, is that reference samples for calibration are not required.Ministerio de Economía y Competitividad TEC2013-40600-RGeneralitat de Catalunya 2014SGR-157Junta de Andalucía P12-TIC-1435Ministerio de Economía y Competitividad TEC2013-41913-PMinisterio de Economía y Competitividad TEC2016-75650-RInstitució Catalana de Recerca i Estudis Avançat

    Differential microfluidic sensors based on dumbbell-shaped defect ground structures in microstrip technology : analysis, optimization, and applications

    Get PDF
    A microstrip defect ground structure (DGS) based on a pair of dumbbell-shaped slots is used for sensing. The device is a differential sensor consisting of a pair of mirrored lines loaded with a dumbbell-shaped DGS, and the output variable is the cross-mode transmission coefficient. Such a variable is very sensitive to asymmetries in the line pair, e.g., caused by an asymmetric dielectric load in the dumbbell-shaped DGSs. Therefore, the sensor is of special interest for the dielectric characterization of solids and liquids, or for the measurement of variables related to complex permittivity changes. It is shown in this work that by adding fluidic channels on top of the dumbbell-shaped DGSs, the device is useful for liquid characterization, particularly for the measurement of solute concentration in very diluted solutions. A sensitivity analysis useful for sensor design is carried out in this paper

    Planar microwave resonant sensors : a review and recent developments

    Get PDF
    Microwave sensors based on electrically small planar resonant elements are reviewed in this paper. By virtue of the high sensitivity of such resonators to the properties of their surrounding medium, particularly the dielectric constant and the loss factor, these sensors are of special interest (although not exclusive) for dielectric characterization of solids and liquids, and for the measurement of material composition. Several sensing strategies are presented, with special emphasis on differential-mode sensors. The main advantages and limitations of such techniques are discussed, and several prototype examples are reported, mainly including sensors for measuring the dielectric properties of solids, and sensors based on microfluidics (useful for liquid characterization and liquid composition). The proposed sensors have high potential for application in real scenarios (including industrial processes and characterization of biosamples)

    Radio-Frequency Sensors for High Performance Liquid Chromatography Applications

    Get PDF
    As a fast-developing analytical technique for separation, purification, identification and quantification of components in a mixture, high performance liquid chromatography (HPLC) has been widely used in various fields including biology, food, environment, pharmacy and so on. As a critical part in the HPLC system, the detector with the feature of high sensitivity, universal detection and gradient-elution compatibility is highly desired. In this dissertation, two types of radio-frequency (RF) sensors for HPLC gradient applications are presented: a tunable interferometer (TIM) and a modified square ring loaded resonator (SRLR). For the TIM-based sensor, the sensitivity is evaluated by measuring a few common chemicals in DI water at multiple frequencies from 0.98 GHz to 7.09 GHz. Less than 84 ppm limit of detection (LOD) is demonstrated. An algorithm is provided and used to obtain sample dielectric permittivity at each frequency point. When connected to a commercial HPLC system and injected with a 10 ÎĽL aliquot of 10000 ppm caffeine DI-water solution, the sensor yields a signal-to-noise ratio (SNR) up to 10 under isocratic and gradient elution operations. Furthermore, the sensor demonstrates a capability to quantify co-eluted vitamin E succinate (VES) and vitamin D3 (VD3). For the SRLR-based sensor, where a transmission line and a ring are electrically shorted with a center gap, the detection linearity is characterized by measuring water-caffeine samples from 0.77 ppm to 1000 ppm when connected to the HPLC system. A 0.231 ppm limit of detection (LOD) is achieved, revealing a comparable sensitivity with commercial ultraviolet (UV) detectors. The compatibility of the proposed sensor to gradient elution is also demonstrated. Besides, this work presents a method for the measurement of liquid permittivity without using liquid reference materials or calibration standards. The method uses a single transmission line and a single microfluidic channel which intercepts the line twice. As a result, two transmission line segments are formed with channel sections to measure liquid samples. By choosing a 2:1 ratio for the two line segment lengths, closed-form formulas are provided to calculate line propagation constants directly from measured S-parameters. Then, sample permittivity values are obtained. A coplanar waveguide is built and tested with de-ionized water, methanol, ethanol and 2-propanol from 0.1 GHz to 9 GHz. The obtained performance agrees with simulation results. The obtained sample permittivity values agree with commonly accepted values. Radiofrequency (RF) non-thermal (NT) bio-effects have been a subject of debate and attracted significant interests due to the potential health risks or beneficial applications. A miniature transverse electro-magnetic (TEM) device is designed for broadband investigation of RF NT effects on Saccharomyces cerevisiae growth, a common yeast species. The frequency-dependent yeast permittivity, obtained by measuring the difference between the medium and yeast in the medium, was used to select the applied RF frequencies, i.e., 1.0 MHz, 3.162 MHz, 10 MHz and 905 MHz. The results showed that the RF field at 3.162 MHz reduced yeast growth rates by 11.7%; however, the RF fields at 1.0 MHz and 10 MHz enhanced cell growth rates by 16.2% and 4.3%, respectively. In contrast, the RF field at 905 MHz had no effect on the growth rates

    Microwave sensors based on resonant elements

    Get PDF
    This paper highlights interest in the implementation of microwave sensors based on resonant elements, the subject of a special issue in the journal. A classification of these sensors on the basis of the operating principle is presented, and the advantages and limitations of the different sensor types are pointed out. Finally, the paper summarizes the different contributions to the special issue

    An analytical method to implement high-sensitivity transmission line differential sensors for dielectric constant measurements

    Get PDF
    A simple analytical method useful to optimize the sensitivity in differential sensors based on a pair of meandered microstrip lines is presented in this paper. Sensing is based on the phase difference of the transmission coefficients of both lines, when such lines are asymmetrically loaded. The analysis provides the combination of operating frequency and line length (the main design parameters) that are necessary to obtain the maximum possible differential phase (±180°) for a given level of the differential dielectric constant (input dynamic range). The proposed sensor is useful to detect tiny defects of a sample under test (SUT) as compared to a reference (REF) sample. It can also be applied to the measurement of the complex dielectric constant of the SUT, where the real part is inferred from the differential phase, whereas the imaginary part, or the loss tangent, is derived from the modulus of the transmission coefficient of the line loaded with the SUT. It is experimentally demonstrated that the proposed device is able to detect the presence of few and small (purposely generated) defects in a commercial microwave substrate, as well as subtle variations in their density, pointing out the high achieved sensor sensitivity. Sensor validation is also carried out by determining the dielectric constant and loss tangent of commercial microwave substrate

    Highly sensitive phase variation sensors based on step-impedance coplanar waveguide (CPW) transmission lines

    Get PDF
    Reflective-mode step-impedance transmission line based sensors for dielectric characterization of solids or liquids have been recently proposed. In this article, in order to further increase the sensitivity, the sensor is implemented in coplanar waveguide (CPW technology), and this constitutes the main novelty of this work. The sensor thus consists of a high-impedance 90° (or low-impedance 180°) open-ended sensing line cascaded to a low-impedance 90° (or high-impedance 90°) line. The output variable is the phase of the reflection coefficient, which depends on the dielectric constant of the material under test (MUT), the input variable. Placing a MUT on top of the sensing line causes a variation in the effective dielectric constant of the line, thereby modifying the phase of such line. This in turn produces a multiplicative effect on the phase of the reflection coefficient, by virtue of the step-impedance discontinuity. The main advantage of the CPW-based sensor, over other similar sensors based on microstrip technology, is the stronger dependence of the phase velocity of the sensing line with the dielectric constant of the MUT, resulting in sensitivities as high as -45.48° in one of the designed sensors. The sensor is useful for dielectric characterization of solids and liquids, and for the measurement of variables related to changes in the dielectric constant of the MUT (defect detection, material composition, etc.

    Dual mode microwave microfluidic sensor for temperature variant liquid characterization

    Get PDF
    A dual mode, microstrip, microfluidic sensor was designed, built, and tested, which has the ability to measure a liquid's permittivity at 2.5 GHz and, simultaneously, compensate for temperature variations. The active liquid volume is small, only around 4.5 μL. The sensor comprises two quarter ring microstrip resonators, which are excited in parallel. The first of these is a microfluidic sensor whose resonant frequency and quality factor depend on the dielectric properties of a liquid sample. The second is used as a reference to adjust for changes in the ambient temperature. To validate this method, two liquids (water and chloroform) have been tested over a temperature range from 23 °C to 35 °C, with excellent compensation results

    Metal Discovery by Highly Sensitive Microwave Multi-Band Metamaterial-inspired Sensors

    Get PDF
    A simple, compact, contactless, and high sensitivity metamaterial-inspired sensor has been developed to detect and classify precious transition metals in the S- and C-band regime, using reflection coefficients. A multi-band metamaterial, quadruple concentric circular split ring resonator, is specifically designed as a sensing enhancer, where the additional bands can effectively trigger the electromagnetic properties, as well as enhance the differentiation between the testing metal samples. The proposed sensor was tested on precious transition metals, silver, platinum, and gold thin slabs of various thicknesses, from 0.5 µm to 3 mm. Five resonances were established in the frequency range of 2–8 GHz. Distinguishable frequency responses generated from different metal samples at those five resonances specify the capability of classifying the metal contents and thicknesses
    • …
    corecore