41,758 research outputs found

    Cooperative Control And Advanced Management Of Distributed Generators In A Smart Grid

    Get PDF
    Smart grid is more than just the smart meters. The future smart grids are expected to include a high penetration of distributed generations (DGs), most of which will consist of renewable energy sources, such as solar or wind energy. It is believed that the high penetration of DGs will result in the reduction of power losses, voltage profile improvement, meeting future load demand, and optimizing the use of non-conventional energy sources. However, more serious problems will arise if a decent control mechanism is not exploited. An improperly managed high PV penetration may cause voltage profile disturbance, conflict with conventional network protection devices, interfere with transformer tap changers, and as a result, cause network instability. Indeed, it is feasible to organize DGs in a microgrid structure which will be connected to the main grid through a point of common coupling (PCC). Microgrids are natural innovation zones for the smart grid because of their scalability and flexibility. A proper organization and control of the interaction between the microgrid and the smartgrid is a challenge. Cooperative control makes it possible to organize different agents in a networked system to act as a group and realize the designated objectives. Cooperative control has been already applied to the autonomous vehicles and this work investigates its application in controlling the DGs in a micro grid. The microgrid power objectives are set by a higher level control and the application of the cooperative control makes it possible for the DGs to utilize a low bandwidth communication network and realize the objectives. Initially, the basics of the application of the DGs cooperative control are formulated. This includes organizing all the DGs of a microgrid to satisfy an active and a reactive power objective. Then, the cooperative control is further developed by the introduction of clustering DGs into several groups to satisfy multiple power objectives. Then, the cooperative distribution optimization is introduced iii to optimally dispatch the reactive power of the DGs to realize a unified microgrid voltage profile and minimize the losses. This distributed optimization is a gradient based technique and it is shown that when the communication is down, it reduces to a form of droop. However, this gradient based droop exhibits a superior performance in the transient response, by eliminating the overshoots caused by the conventional droop. Meanwhile, the interaction between each microgrid and the main grid can be formulated as a Stackelberg game. The main grid as the leader, by offering proper energy price to the micro grid, minimizes its cost and secures the power. This not only optimizes the economical interests of both sides, the microgrids and the main grid, but also yields an improved power flow and shaves the peak power. As such, a smartgrid may treat microgrids as individually dispatchable loads or generators

    Aromatic network for power distribution system

    Get PDF
    Electricity is an essential part of our existence in present days but inconsistent supply of electricity during tropical cyclones and natural disasters or fault in grid can create a dilemma over our life style, especially for remote area or island and even for the entire nation. These problems can be addressed at the distribution level by using smart, self-controlled and resilient micro electric grid that can operate on its own as microgrid or with grid connected mode as distribution network and energized by Renewable Energy Sources (RES). Three different designs of distribution network are commonly used and modified as microgrid structure which are: radial network, ring/loop network and mesh network architecture. Each of them has serious drawbacks to work during the disaster situations especially during the tropical cyclone or even snowstorm. To overcome these situation; a novel distribution network with better control and management techniques is designed here which is intrinsically potential for the future power systems to achieve reliability, efficiency and quality power supply even during the disaster. This design is essentially inspired by natural structure of an aromatic molecule which could be applied in the grid structure that would be strong enough to withstand any unexpected situations or faults. The novel network structure is represented as an aromatic molecule, like dichlorodiphenyltrichloroethane (DDT) where hexagonal benzene is the basic element for the network. This aromatic structure and the properties of the compound are used as the concept of the proposed design for the distribution network to ensure better stability and resiliency. Moreover, self-healing mechanism is embedded in the distribution system to minimize system interruptions during common faults. Finally, to maximize energy efficiency and reduce human effort, smart wireless communication system, effective control technology and switching of distributed generations (DG’s) with respect to demand and consumption have been included in this network design

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.

    An intelligent self-configurable mechanism for distributed energy storage systems

    Full text link
    Next generation of smart grid technologies demand intel- ligent capabilities for communication, interaction, monitoring, storage, and energy transmission. Multiagent systems are envisioned to provide autonomic and adaptability features to these systems in order to gain advantage in their current environments. In this paper we present a mechanism for providing distributed energy storage systems (DESSs) with intelligent capabilities. In more detail, we propose a self-con gurable mechanism which allows a DESS to adapt itself according to the future environmental requirements. This mechanism is aimed at reducing the costs at which energy is purchased from the market.This work has been partially supported by projects TIN2012-36586-C03-01 and TIN2011-27652-C03-01.Alberola Oltra, JM.; Julian Inglada, VJ.; García-Fornes, A. (2014). An intelligent self-configurable mechanism for distributed energy storage systems. Cybernetics and Systems. 45(3):292-305. https://doi.org/10.1080/01969722.2014.894859S292305453Abbey , C. and G. Joos . “Coordination of Distributed Storage with Wind Energy in a Rural Distribution System.” Paper presented at Industry Applications Conference, 42nd IAS Annual Meeting, September 23–27, 2007, New Orleans, USA .Alberola , J. M. , V. Julian , and A. Garcia-Fornes . “Multi-Dimensional Transition Deliberation for Organization Adaptation in Multiagent Systems.” Paper presented at the 11th International Conference on Aut. Agents and MAS (AAMAS12), June 4–8, 2012, Valencia, Spain .Chouhan , N. S. and M. Ferdowsi . “Review of Energy Storage Systems.” Paper presented at North American Power Symposium (NAPS), October 4–6, 2009, Mississippi, USA.Conejo, A. J., Plazas, M. A., Espinola, R., & Molina, A. B. (2005). Day-Ahead Electricity Price Forecasting Using the Wavelet Transform and ARIMA Models. IEEE Transactions on Power Systems, 20(2), 1035-1042. doi:10.1109/tpwrs.2005.846054Costa , L. , F. Bourry , J. Juban , and G. Kariniotakis . “Management of Energy Storage Coordinated with Wind Power under Electricity Market Conditions.” Paper presented at 10th International Conference on Probabilistic Methods Applied to Power Systems, May 25–29, 2008, Rincón, Puerto Rico .Eyer , J. and G. Corey . “Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide.” Sandia National Laboratories, 2010. Technical Report .Jiang , Z. “Agent-Based Control Framework for Distributed Energy Resources Microgrids.” Paper presented at International Conference on Intelligent Agent Technology, December 18–22, 2006, Hong Kong .Karnouskos , S. and T. N. De Holanda . “Simulation of a Smart Grid City with Software Agents.” Paper presented at Third UKSim European Symposium on Computer Modeling and Simulation, November 25–27, 2009, Athens, Greece .Ketter, W., Collins, J., & Reddy, P. (2013). Power TAC: A competitive economic simulation of the smart grid. Energy Economics, 39, 262-270. doi:10.1016/j.eneco.2013.04.015Lakshman, A., & Malik, P. (2010). Cassandra. ACM SIGOPS Operating Systems Review, 44(2), 35. doi:10.1145/1773912.1773922Logenthiran, T., Srinivasan, D., Khambadkone, A. M., & Aung, H. N. (2012). Multiagent System for Real-Time Operation of a Microgrid in Real-Time Digital Simulator. IEEE Transactions on Smart Grid, 3(2), 925-933. doi:10.1109/tsg.2012.2189028Maly, D. K., & Kwan, K. S. (1995). Optimal battery energy storage system (BESS) charge scheduling with dynamic programming. IEE Proceedings - Science, Measurement and Technology, 142(6), 453-458. doi:10.1049/ip-smt:19951929Mihailescu , R. C. , M. Vasirani , and S. Ossowski . “Dynamic Coalition Formation and Adaptation for Virtual Power Stations in Smart Grids.” Paper presented at 2nd International Workshop on Agent Technologies for Energy Systems, May 2, 2011, Taipei, Taiwan .Mohd , A. , E. Ortjohann , A. Schmelter , N. Hamsic , and D. Morton . “Challenges in Integrating Distributed Energy Storage Systems into Future Smart Grid.” Paper presented at IEEE International Symposium on Industrial Electronics, June 30–July 2, 2008, Cambridge, UK .Mohsenian-Rad, A.-H., & Leon-Garcia, A. (2010). Optimal Residential Load Control With Price Prediction in Real-Time Electricity Pricing Environments. IEEE Transactions on Smart Grid, 1(2), 120-133. doi:10.1109/tsg.2010.2055903Momoh , J. A. “Smart Grid Design for Efficient and Flexible Power Networks Operation and Control.” Paper presented at IEEE PES Power Systems Conference and Exposition, March 15–18, 2009, Seattle, USA .Nguyen, C. P., & Flueck, A. J. (2012). Agent Based Restoration With Distributed Energy Storage Support in Smart Grids. IEEE Transactions on Smart Grid, 3(2), 1029-1038. doi:10.1109/tsg.2012.2186833Nourai , A. “Installation of the First Distributed Energy Storage System (DESS) At American Electric Power.” Sandia National Laboratories, 2007. Technical Report.Oyarzabal , J. , J. Jimeno , J. Ruela , A. Engler , and C. Hardt . “Agent Based Micro Grid Management System.” Paper presented at International Conference on Future Power Systems, November 16–18, 2005, Amsterdam, Netherlands .Pinson, P., Chevallier, C., & Kariniotakis, G. N. (2007). Trading Wind Generation From Short-Term Probabilistic Forecasts of Wind Power. IEEE Transactions on Power Systems, 22(3), 1148-1156. doi:10.1109/tpwrs.2007.901117Pipattanasomporn , M. , H. Feroze , and S. Rahman . “Multi-agent Systems in a Distributed Smart Grid: Design and Implementation.” Paper presented at IEEE/PES Power Systems Conference and Exposition, March 15–18, 2009, Seattle, USA .Reddy , P. P. and M. M. Veloso . “Factored Models for Multiscale Decision Making in Smart Grid Customers.” Paper presented at the Twenty-sixth AAAI Conference on Artificial Intelligence, July 22–26, 2012, Toronto, Canada .Ribeiro, P. F., Johnson, B. K., Crow, M. L., Arsoy, A., & Liu, Y. (2001). Energy storage systems for advanced power applications. Proceedings of the IEEE, 89(12), 1744-1756. doi:10.1109/5.975900Schutte , S. and M. Sonnenschein . “Mosaik-Scalable Smart Grid Scenario Specification.” Paper presented at Proceedings of the 2012 Winter Simulation Conference (WSC), December 9–12, 2012, Berlin, Germany .Sioshansi, R., Denholm, P., Jenkin, T., & Weiss, J. (2009). Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects. Energy Economics, 31(2), 269-277. doi:10.1016/j.eneco.2008.10.005Szkuta, B. R., Sanabria, L. A., & Dillon, T. S. (1999). Electricity price short-term forecasting using artificial neural networks. IEEE Transactions on Power Systems, 14(3), 851-857. doi:10.1109/59.780895Van Dam, K. H., Houwing, M., Lukszo, Z., & Bouwmans, I. (2008). Agent-based control of distributed electricity generation with micro combined heat and power—Cross-sectoral learning for process and infrastructure engineers. Computers & Chemical Engineering, 32(1-2), 205-217. doi:10.1016/j.compchemeng.2007.07.012Vosen, S. (1999). Hybrid energy storage systems for stand-alone electric power systems: optimization of system performance and cost through control strategies. International Journal of Hydrogen Energy, 24(12), 1139-1156. doi:10.1016/s0360-3199(98)00175-xVytelingum , P. , T. D. Voice , S. Ramchurn , A. Rogers , and N. R. Jennings . “Agent-Based Micro-Storage Management for the Smart Grid.” Paper presented at Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, May 10–14, 2010a, Toronto, Canada .Vytelingum , P. , T. D. Voice , S. Ramchurn , A. Rogers , and N. R. Jennings . “Intelligent Agents for the Smart Grid.” Paper presented at the 9th International Conference on Autonomous Agents and Multiagent Systems, May 10–14, 2010b, Toronto, Canada
    • …
    corecore