9,368 research outputs found

    Conditional network embeddings

    Get PDF
    Network Embeddings (NEs) map the nodes of a given network into dd-dimensional Euclidean space Rd\mathbb{R}^d. Ideally, this mapping is such that 'similar' nodes are mapped onto nearby points, such that the NE can be used for purposes such as link prediction (if 'similar' means being 'more likely to be connected') or classification (if 'similar' means 'being more likely to have the same label'). In recent years various methods for NE have been introduced, all following a similar strategy: defining a notion of similarity between nodes (typically some distance measure within the network), a distance measure in the embedding space, and a loss function that penalizes large distances for similar nodes and small distances for dissimilar nodes. A difficulty faced by existing methods is that certain networks are fundamentally hard to embed due to their structural properties: (approximate) multipartiteness, certain degree distributions, assortativity, etc. To overcome this, we introduce a conceptual innovation to the NE literature and propose to create \emph{Conditional Network Embeddings} (CNEs); embeddings that maximally add information with respect to given structural properties (e.g. node degrees, block densities, etc.). We use a simple Bayesian approach to achieve this, and propose a block stochastic gradient descent algorithm for fitting it efficiently. We demonstrate that CNEs are superior for link prediction and multi-label classification when compared to state-of-the-art methods, and this without adding significant mathematical or computational complexity. Finally, we illustrate the potential of CNE for network visualization

    Analytical Challenges in Modern Tax Administration: A Brief History of Analytics at the IRS

    Get PDF

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Learning Collective Behavior in Multi-relational Networks

    Get PDF
    With the rapid expansion of the Internet and WWW, the problem of analyzing social media data has received an increasing amount of attention in the past decade. The boom in social media platforms offers many possibilities to study human collective behavior and interactions on an unprecedented scale. In the past, much work has been done on the problem of learning from networked data with homogeneous topologies, where instances are explicitly or implicitly inter-connected by a single type of relationship. In contrast to traditional content-only classification methods, relational learning succeeds in improving classification performance by leveraging the correlation of the labels between linked instances. However, networked data extracted from social media, web pages, and bibliographic databases can contain entities of multiple classes and linked by various causal reasons, hence treating all links in a homogeneous way can limit the performance of relational classifiers. Learning the collective behavior and interactions in heterogeneous networks becomes much more complex. The contribution of this dissertation include 1) two classification frameworks for identifying human collective behavior in multi-relational social networks; 2) unsupervised and supervised learning models for relationship prediction in multi-relational collaborative networks. Our methods improve the performance of homogeneous predictive models by differentiating heterogeneous relations and capturing the prominent interaction patterns underlying the network structure. The work has been evaluated in various real-world social networks. We believe that this study will be useful for analyzing human collective behavior and interactions specifically in the scenario when the heterogeneous relationships in the network arise from various causal reasons
    corecore