26,240 research outputs found

    An iterative warping and clustering algorithm to estimate multiple wave-shape functions from a nonstationary oscillatory signal

    Full text link
    Nonsinusoidal oscillatory signals are everywhere. In practice, the nonsinusoidal oscillatory pattern, modeled as a 1-periodic wave-shape function (WSF), might vary from cycle to cycle. When there are finite different WSFs, s1,,sKs_1,\ldots,s_K, so that the WSF jumps from one to another suddenly, the different WSFs and jumps encode useful information. We present an iterative warping and clustering algorithm to estimate s1,,sKs_1,\ldots,s_K from a nonstationary oscillatory signal with time-varying amplitude and frequency, and hence the change points of the WSFs. The algorithm is a novel combination of time-frequency analysis, singular value decomposition entropy and vector spectral clustering. We demonstrate the efficiency of the proposed algorithm with simulated and real signals, including the voice signal, arterial blood pressure, electrocardiogram and accelerometer signal. Moreover, we provide a mathematical justification of the algorithm under the assumption that the amplitude and frequency of the signal are slowly time-varying and there are finite change points that model sudden changes from one wave-shape function to another one.Comment: 39 pages, 11 figure

    Imagination as Thought in Aristotle\u27s De Anima

    Get PDF
    Aristotle appears to indicate in various passages in the De Anima that imagination is a kind of thought, and my thesis attempts to make some sense out of this claim. I examine three possible interpretations of the claim that imagination is a kind of thought and eliminate two of them. The first states that Aristotle only calls imagination a kind of thought in a superficial “in name only” sense. The second, more radical interpretation, identifies images as the most basic kind of thoughts. My final chapter defends a more moderate position—inspired by Avempace and the early Averroes—which steers between the superficial and radical interpretations, by construing the formal content of images as a sort of quasi-corporeal substrate for the generation of learned thoughts

    The temporality of rhetoric: the spatialization of time in modern criticism

    Get PDF
    Every conception of criticism conceals a notion of time which informs the manner in which the critic conceives of history, representation and criticism itself. This thesis reveals the philosophies of time inherent in certain key modern critical concepts: allegory, irony and the sublime. Each concept opens a breach in time, a disruption of chronology. In each case this gap or aporia is emphatically closed, elided or denied. Taking the philosophy of time elaborated by Giorgio Agamben as an introductory proposition, my argument turns in Chapter One to the allegorical temporality which Walter Benjamin sees as the time of photography. The second chapter examines the aesthetics of the sublime as melancholic or mournful untimeliness. In Chapter Three, Paul de Man's conception of irony provides an exemplary instance of the denial of this troubling temporal predicament. In opposition to the foreclosure of the disturbing temporalities of criticism, history and representation, the thesis proposes a fundamental rethinking of the philosophy of time as it relates to these categories of reflection. In a reading of an inaugural meditation on the nature of time, and in examining certain key contemporary philosophical and critical texts, I argue for a critical attendance to that which eludes those modes of thought that attempt to map time as a recognizable and essentially spatial field. The Confessions of Augustine provide, in the fourth chapter, a model for thinking through the problems set up earlier: Augustine affords us, precisely, a means of conceiving of the gap or the interim. In the final chapter, this concept is developed with reference to the criticism of Arnold and Eliot, the fiction of Virginia Woolf and the philosophy of cinema derived from Deleuze and Lyotard. In conclusion, the philosophical implications of the thesis are placed in relation to a conception of the untimeliness of death

    Data-to-text generation with neural planning

    Get PDF
    In this thesis, we consider the task of data-to-text generation, which takes non-linguistic structures as input and produces textual output. The inputs can take the form of database tables, spreadsheets, charts, and so on. The main application of data-to-text generation is to present information in a textual format which makes it accessible to a layperson who may otherwise find it problematic to understand numerical figures. The task can also automate routine document generation jobs, thus improving human efficiency. We focus on generating long-form text, i.e., documents with multiple paragraphs. Recent approaches to data-to-text generation have adopted the very successful encoder-decoder architecture or its variants. These models generate fluent (but often imprecise) text and perform quite poorly at selecting appropriate content and ordering it coherently. This thesis focuses on overcoming these issues by integrating content planning with neural models. We hypothesize data-to-text generation will benefit from explicit planning, which manifests itself in (a) micro planning, (b) latent entity planning, and (c) macro planning. Throughout this thesis, we assume the input to our generator are tables (with records) in the sports domain. And the output are summaries describing what happened in the game (e.g., who won/lost, ..., scored, etc.). We first describe our work on integrating fine-grained or micro plans with data-to-text generation. As part of this, we generate a micro plan highlighting which records should be mentioned and in which order, and then generate the document while taking the micro plan into account. We then show how data-to-text generation can benefit from higher level latent entity planning. Here, we make use of entity-specific representations which are dynam ically updated. The text is generated conditioned on entity representations and the records corresponding to the entities by using hierarchical attention at each time step. We then combine planning with the high level organization of entities, events, and their interactions. Such coarse-grained macro plans are learnt from data and given as input to the generator. Finally, we present work on making macro plans latent while incrementally generating a document paragraph by paragraph. We infer latent plans sequentially with a structured variational model while interleaving the steps of planning and generation. Text is generated by conditioning on previous variational decisions and previously generated text. Overall our results show that planning makes data-to-text generation more interpretable, improves the factuality and coherence of the generated documents and re duces redundancy in the output document

    Filling in the Gap: A quantitative analysis of dental restoration types among body donors of Asian descent at the Mann-Labrash Osteological Collection

    Get PDF
    The Mann-Labrash Osteological Collection at the University of Hawai’i John A. Burns School of Medicine houses over 230 skeletal remains amassed through the Willed Body Program. Of these donors, seventy-eight were of East and Southeast Asian American and Pacific Islander descent. This unique collection offers an exciting opportunity for skeletal analyses of these populations left understudied in the body of anthropological scientific literature. This thesis explores the dietary causes of dental disease and dental restorations from the past to the present. Additionally, macroscopic analyses and Chi-square statistical tests determined which sex cohorts utilized dental restorative prostheses in life. Also addressed are the socioeconomic determinants of dental care access among these underrepresented groups. Lastly, because of the marginal availability of East and Southeast Asian American and Pacific Islander skeletal remains in US reference collections, an examination of death ideologies and organ donor hesitancies held by these communities are reviewed

    Omics measures of ageing and disease susceptibility

    Get PDF
    While genomics has been a major field of study for decades due to relatively inexpensive genotyping arrays, the recent advancement of technology has also allowed the measure and study of various “omics”. There are now numerous methods and platforms available that allow high throughput and high dimensional quantification of many types of biological molecules. Traditional genomics and transcriptomics are now joined by proteomics, metabolomics, glycomics, lipidomics and epigenomics. I was lucky to have access to a unique resource in the Orkney Complex Disease Study (ORCADES), a cohort of individuals from the Orkney Islands that are extremely deeply annotated. Approximately 1000 individuals in ORCADES have genomics, proteomics, lipidomics, glycomics, metabolomics, epigenomics, clinical risk factors and disease phenotypes, as well as body composition measurements from whole body scans. In addition to these cross-sectional omics and health related measures, these individuals also have linked electronic health records (EHR) available, allowing the assessment of the effect of these omics measures on incident disease over a ~10-year follow up period. In this thesis I use this phenotype rich resource to investigate the relationship between multiple types of omics measures and both ageing and health outcomes. First, I used the ORCADES data to construct measures of biological age (BA). The idea that there is an underlying rate at which the body deteriorates with age that varies between individuals of the same chronological age, this biological age, would be more indicative of health status, functional capacity and risk of age-related diseases than chronological age. Previous models estimating BA (ageing clocks) have predominantly been built using a single type of omics assay and comparison between different omics ageing clocks has been limited. I performed the most exhaustive comparison of different omics ageing clocks yet, with eleven clocks spanning nine different omics assays. I show that different omics clocks overlap in the information they provide about age, that some omics clocks track more generalised ageing while others track specific disease risk factors and that omics ageing clocks are prognostic of incident disease over and above chronological age. Second, I assessed whether individually or in multivariable models, omics measures are associated with health-related risk factors or prognostic of incident disease over 10 years post-assessment. I show that 2,686 single omics biomarkers are associated with 10 risk factors and 44 subsequent incident diseases. I also show that models built using multiple biomarkers from whole body scans, metabolomics, proteomics and clinical risk factors are prognostic of subsequent diabetes mellitus and that clinical risk factors are prognostic of incident hypertensive disorders, obesity, ischaemic heart disease and Framingham risk score. Third, I investigated the genetic architecture of a subset of the proteomics measures available in ORCADES, specifically 184 cardiovascular-related proteins. Combining genome-wide association (GWAS) summary statistics from ORCADES and 17 other cohorts from the SCALLOP Consortium, giving a maximum sample size of 26,494 individuals, I performed 184 genome-wide association meta-analyses (GWAMAs) on the levels of these proteins circulating in plasma. I discovered 592 independent significant loci associated with the levels of at least one protein. I found that between 8-37% of these significant loci colocalise with known expression quantitative trait loci (eQTL). I also find evidence of causal associations between 11 plasma protein levels and disease susceptibility using Mendelian randomisation, highlighting potential candidate drug targets

    Physical phenomena controlling quiescent flame spread in porous wildland fuel beds

    Get PDF
    Despite well-developed solid surface flame spread theories, we still lack a coherent theory to describe flame spread through porous wildland fuel beds. This porosity results in additional complexity, reducing the thermal conductivity of the fuel bed, but allowing in-bed radiative and convective heat transfer to occur. While previous studies have explored the effect of fuel bed structure on the overall fire behaviour, there remains a need for further investigation of the effect of fuel structure on the underlying physical phenomena controlling flame spread. Through an extensive series of laboratory-based experiments, this thesis provides detailed, physics-based insights for quiescent flame spread through natural porous beds, across a range of structural conditions. Measurements are presented for fuel beds representative of natural field conditions within an area of the fire-prone New Jersey Pinelands National Reserve, which compliment a related series of field experiments conducted as part of a wider research project. Additional systematic investigation across a wider range of fuel conditions identified independent effects of fuel loading and bulk density on the spread rate, flame height and heat release rate. However, neither fuel loading nor bulk density alone provided adequate prediction of the resulting fire behaviour. Drawing on existing structural descriptors (for both natural and engineered fuel beds) an alternative parameter ασδ was proposed. This parameter (incorporating the fuel bed porosity (α), fuel element surface-to-volume ratio (σ), and the fuel bed height (δ)) was strongly correlated with the spread rate. One effect of the fuel bed structure is to influence the heat transfer mechanisms both above and within the porous fuel bed. Existing descriptions of radiation transport through porous fuel beds are often predicated on the assumption of an isotropic fuel bed. However, given their preferential angle of inclination, the pine needle beds in this study may not exhibit isotropic behaviour. Regardless, for the structural conditions investigated, horizontal heat transfer through the fuel bed was identified as the dominant heating mechanism within this quiescent flame spread scenario. However, the significance of heat transfer contributions from the above-bed flame generally increased with increasing ασδ value of the fuel bed. Using direct measurements of the heat flux magnitude and effective heating distance, close agreement was observed between experimentally observed spread rates and a simple thermal model considering only radiative heat transfer through the fuel bed, particularly at lower values of ασδ. Over-predictions occurred at higher ασδ values, or where other heat transfer terms were incorporated, which may highlight the need to include additional heat loss terms. A significant effect of fuel structure on the primary flow regimes, both within and above these porous fuel beds, was also observed, with important implications for the heat transfer and oxygen supply within the fuel bed. Independent effects of fuel loading and bulk density on both the buoyant and buoyancy-driven entrainment flow were observed, with a complex feedback cycle occurring between Heat Release Rate (HRR) and combustion behaviour. Generally, increases in fuel loading resulted in increased HRR, and therefore increased buoyant flow velocity, along with an increase in the velocity of flow entrained towards the combustion region. The complex effects of fuel structure in both the flaming and smouldering combustion phases may necessitate modifications to other common modelling approaches. The widely used Rothermel model under-predicted spread rate for higher bulk density and lower ασδ fuel beds. As previously suggested, an over-sensitivity to fuel bed height was observed, with experimental comparison indicating an under-prediction of reaction intensity at lower fuel heights. These findings have important implications particularly given the continuing widespread use of the Rothermel model, which continues to underpin elements of the BehavePlus fire modelling system and the US National Fire Danger Rating System. The physical insights, and modelling approaches, developed for this low-intensity, quiescent flame spread scenario, are applicable to common prescribed fire activities. It is hoped that this work (alongside complimentary laboratory and field experiments conducted by various authors as part of a wider multi-agency project (SERDP-RC2641)) will contribute to the emerging field of prescribed fire science, and help to address the pressing need for further development of fire prediction and modelling tools

    Structure and adsorption properties of gas-ionic liquid interfaces

    Get PDF
    Supported ionic liquids are a diverse class of materials that have been considered as a promising approach to design new surface properties within solids for gas adsorption and separation applications. In these materials, the surface morphology and composition of a porous solid are modified by depositing ionic liquid. The resulting materials exhibit a unique combination of structural and gas adsorption properties arising from both components, the support, and the liquid. Naturally, theoretical and experimental studies devoted to understanding the underlying principles of exhibited interfacial properties have been an intense area of research. However, a complete understanding of the interplay between interfacial gas-liquid and liquid-solid interactions as well as molecular details of these processes remains elusive. The proposed problem is challenging and in this thesis, it is approached from two different perspectives applying computational and experimental techniques. In particular, molecular dynamics simulations are used to model gas adsorption in films of ionic liquids on a molecular level. A detailed description of the modeled systems is possible if the interfacial and bulk properties of ionic liquid films are separated. In this study, we use a unique method that recognizes the interfacial and bulk structures of ionic liquids and distinguishes gas adsorption from gas solubility. By combining classical nitrogen sorption experiments with a mean-field theory, we study how liquid-solid interactions influence the adsorption of ionic liquids on the surface of the porous support. The developed approach was applied to a range of ionic liquids that feature different interaction behavior with gas and porous support. Using molecular simulations with interfacial analysis, it was discovered that gas adsorption capacity can be directly related to gas solubility data, allowing the development of a predictive model for the gas adsorption performance of ionic liquid films. Furthermore, it was found that this CO2 adsorption on the surface of ionic liquid films is determined by the specific arrangement of cations and anions on the surface. A particularly important result is that, for the first time, a quantitative relation between these structural and adsorption properties of different ionic liquid films has been established. This link between two types of properties determines design principles for supported ionic liquids. However, the proposed predictive model and design principles rely on the assumption that the ionic liquid is uniformly distributed on the surface of the porous support. To test how ionic liquids behave under confinement, nitrogen physisorption experiments were conducted for micro‐ and mesopore analysis of supported ionic liquid materials. In conjunction with mean-field density functional theory applied to the lattice gas and pore models, we revealed different scenarios for the pore-filling mechanism depending on the strength of the liquid-solid interactions. In this thesis, a combination of computational and experimental studies provides a framework for the characterization of complex interfacial gas-liquid and liquid-solid processes. It is shown that interfacial analysis is a powerful tool for studying molecular-level interactions between different phases. Finally, nitrogen sorption experiments were effectively used to obtain information on the structure of supported ionic liquids

    Response of saline reservoir to different phaseCO₂-brine: experimental tests and image-based modelling

    Get PDF
    Geological CO₂ storage in saline rocks is a promising method for meeting the target of net zero emission and minimizing the anthropogenic CO₂ emitted into the earth’s atmosphere. Storage of CO₂ in saline rocks triggers CO₂-brine-rock interaction that alters the properties of the rock. Properties of rocks are very crucial for the integrity and efficiency of the storage process. Changes in properties of the reservoir rocks due to CO₂-brine-rock interaction must be well predicted, as some changes can reduce the storage integrity of the reservoir. Considering the thermodynamics, phase behavior, solubility of CO₂ in brine, and the variable pressure-temperature conditions of the reservoir, there will be undissolved CO₂ in a CO₂ storage reservoir alongside the brine for a long time, and there is a potential for phase evolution of the undissolved CO₂. The phase of CO₂ influence the CO₂-brine-rock interaction, different phaseCO₂-brine have a unique effect on the properties of the reservoir rocks, Therefore, this study evaluates the effect of four different phaseCO₂-brine reservoir states on the properties of reservoir rocks using experimental and image-based approach. Samples were saturated with the different phaseCO₂-brine, then subjected to reservoir conditions in a triaxial compression test. The representative element volume (REV)/representative element area (REA) for the rock samples was determined from processed digital images, and rock properties were evaluated using digital rock physics and rock image analysis techniques. This research has evaluated the effect of different phaseCO₂-brine on deformation rate and deformation behavior, bulk modulus, compressibility, strength, and stiffness as well as porosity and permeability of sample reservoir rocks. Changes in pore geometry properties, porosity, and permeability of the rocks in CO₂ storage conditions with different phaseCO₂-brine have been evaluated using digital rock physics techniques. Microscopic rock image analysis has been applied to provide evidence of changes in micro-fabric, the topology of minerals, and elemental composition of minerals in saline rocks resulting from different phaseCO₂-br that can exist in a saline CO₂ storage reservoir. It was seen that the properties of the reservoir that are most affected by the scCO₂-br state of the reservoir include secondary fatigue rate, bulk modulus, shear strength, change in the topology of minerals after saturation as well as change in shape and flatness of pore surfaces. The properties of the reservoir that is most affected by the gCO₂-br state of the reservoir include primary fatigue rate, change in permeability due to stress, change in porosity due to stress, and change topology of minerals due to stress. For all samples, the roundness and smoothness of grains as well as smoothness of pores increased after compression while the roundness of pores decreased. Change in elemental composition in rock minerals in CO₂-brine-rock interaction was seen to depend on the reactivity of the mineral with CO₂ and/or brine and the presence of brine accelerates such change. Carbon, oxygen, and silicon can be used as index minerals for elemental changes in a CO₂-brine-rock system. The result of this work can be applied to predicting the effect the different possible phases of CO₂ will have on the deformation, geomechanics indices, and storage integrity of giant CO₂ storage fields such as Sleipner, In Salah, etc
    corecore