36,727 research outputs found

    Propagation Kernels

    Full text link
    We introduce propagation kernels, a general graph-kernel framework for efficiently measuring the similarity of structured data. Propagation kernels are based on monitoring how information spreads through a set of given graphs. They leverage early-stage distributions from propagation schemes such as random walks to capture structural information encoded in node labels, attributes, and edge information. This has two benefits. First, off-the-shelf propagation schemes can be used to naturally construct kernels for many graph types, including labeled, partially labeled, unlabeled, directed, and attributed graphs. Second, by leveraging existing efficient and informative propagation schemes, propagation kernels can be considerably faster than state-of-the-art approaches without sacrificing predictive performance. We will also show that if the graphs at hand have a regular structure, for instance when modeling image or video data, one can exploit this regularity to scale the kernel computation to large databases of graphs with thousands of nodes. We support our contributions by exhaustive experiments on a number of real-world graphs from a variety of application domains

    Towards learning free naive bayes nearest neighbor-based domain adaptation

    Get PDF
    As of today, object categorization algorithms are not able to achieve the level of robustness and generality necessary to work reliably in the real world. Even the most powerful convolutional neural network we can train fails to perform satisfactorily when trained and tested on data from different databases. This issue, known as domain adaptation and/or dataset bias in the literature, is due to a distribution mismatch between data collections. Methods addressing it go from max-margin classifiers to learning how to modify the features and obtain a more robust representation. Recent work showed that by casting the problem into the image-to-class recognition framework, the domain adaptation problem is significantly alleviated [23]. Here we follow this approach, and show how a very simple, learning free Naive Bayes Nearest Neighbor (NBNN)-based domain adaptation algorithm can significantly alleviate the distribution mismatch among source and target data, especially when the number of classes and the number of sources grow. Experiments on standard benchmarks used in the literature show that our approach (a) is competitive with the current state of the art on small scale problems, and (b) achieves the current state of the art as the number of classes and sources grows, with minimal computational requirements. © Springer International Publishing Switzerland 2015
    • …
    corecore