3,637 research outputs found

    Fitting multilevel multivariate models with missing data in responses and covariates that may include interactions and non-linear terms

    Get PDF
    The paper extends existing models for multilevel multivariate data with mixed response types to handle quite general types and patterns of missing data values in a wide range of multilevel generalized linear models. It proposes an efficient Bayesian modelling approach that allows missing values in covariates, including models where there are interactions or other functions of covariates such as polynomials. The procedure can also be used to produce multiply imputed complete data sets. A simulation study is presented as well as the analysis of a longitudinal data set. The paper also shows how existing multiprocess models for handling endogeneity can be extended by the framework proposed

    Estimation of a semiparametric transformation model

    Full text link
    This paper proposes consistent estimators for transformation parameters in semiparametric models. The problem is to find the optimal transformation into the space of models with a predetermined regression structure like additive or multiplicative separability. We give results for the estimation of the transformation when the rest of the model is estimated non- or semi-parametrically and fulfills some consistency conditions. We propose two methods for the estimation of the transformation parameter: maximizing a profile likelihood function or minimizing the mean squared distance from independence. First the problem of identification of such models is discussed. We then state asymptotic results for a general class of nonparametric estimators. Finally, we give some particular examples of nonparametric estimators of transformed separable models. The small sample performance is studied in several simulations.Comment: Published in at http://dx.doi.org/10.1214/009053607000000848 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Using Quantile Regression for Duration Analysis

    Get PDF
    Quantile regression methods are emerging as a popular technique in econometrics and biometrics for exploring the distribution of duration data. This paper discusses quantile regression for duration analysis allowing for a flexible specification of the functional relationship and of the error distribution. Censored quantile regression address the issue of right censoring of the response variable which is common in duration analysis. We compare quantile regression to standard duration models. Quantile regression do not impose a proportional effect of the covariates on the hazard over the duration time. However, the method can not take account of time{varying covariates and it has not been extended so far to allow for unobserved heterogeneity and competing risks. We also discuss how hazard rates can be estimated using quantile regression methods. A small application with German register data on unemployment duration for younger workers demonstrates the applicability and the usefulness of quantile regression for empirical duration analysis. --censored quantile regression,unemployment duration,unobserved heterogeneity,hazard rate

    Distributional Regression for Data Analysis

    Full text link
    Flexible modeling of how an entire distribution changes with covariates is an important yet challenging generalization of mean-based regression that has seen growing interest over the past decades in both the statistics and machine learning literature. This review outlines selected state-of-the-art statistical approaches to distributional regression, complemented with alternatives from machine learning. Topics covered include the similarities and differences between these approaches, extensions, properties and limitations, estimation procedures, and the availability of software. In view of the increasing complexity and availability of large-scale data, this review also discusses the scalability of traditional estimation methods, current trends, and open challenges. Illustrations are provided using data on childhood malnutrition in Nigeria and Australian electricity prices.Comment: Accepted for publication in Annual Review of Statistics and its Applicatio

    GsymPoint: An R Package to Estimate the Generalized Symmetry Point, an Optimal Cut-off Point for Binary Classification in Continuous Diagnostic Tests

    Get PDF
    In clinical practice, it is very useful to select an optimal cutpoint in the scale of a continuous biomarker or diagnostic test for classifying individuals as healthy or diseased. Several methods for choosing optimal cutpoints have been presented in the literature, depending on the ultimate goal. One of these methods, the generalized symmetry point, recently introduced, generalizes the symmetry point by incorporating the misclassification costs. Two statistical approaches have been proposed in the literature for estimating this optimal cutpoint and its associated sensitivity and specificity measures, a parametric method based on the generalized pivotal quantity and a nonparametric method based on empirical likelihood. In this paper, we introduce GsymPoint, an R package that implements these methods in a user-friendly environment, allowing the end-user to calculate the generalized symmetry point depending on the levels of certain categorical covariates. The practical use of this package is illustrated using three real biomedical datasetsThis research has been supported by several Grants from the Spanish Ministry of Science and Innovation. M. López-Ratón and C. Cadarso-Suárez acknowledge support to MTM2011-15849-E, MTM2011-28285-C02-00, MTM2014-52975-C2-1-R and MTM2015-69068-REDT. E.M. Molanes-López acknowledges support to MTM2011-28285-C02-02, ECO2011-25706, MTM2011-15849-E and MTM2015-69068-REDT. E. Letón acknowledges support to MTM2011-15849-E, MTM2011-28285-C02-02, PI13/02446 and MTM2015-69068-REDTS

    tramME: Mixed-Effects Transformation Models Using Template Model Builder

    Full text link
    Linear transformation models constitute a general family of parametric regression models for discrete and continuous responses. To accommodate correlated responses, the model is extended by incorporating mixed effects. This article presents the R package tramME, which builds on existing implementations of transformation models (mlt and tram packages) as well as Laplace approximation and automatic differentiation (using the TMB package), to calculate estimates and perform likelihood inference in mixed-effects transformation models. The resulting framework can be readily applied to a wide range of regression problems with grouped data structures
    corecore