164,880 research outputs found

    Automatic instantiation of abstract tests on specific configurations for large critical control systems

    Full text link
    Computer-based control systems have grown in size, complexity, distribution and criticality. In this paper a methodology is presented to perform an abstract testing of such large control systems in an efficient way: an abstract test is specified directly from system functional requirements and has to be instantiated in more test runs to cover a specific configuration, comprising any number of control entities (sensors, actuators and logic processes). Such a process is usually performed by hand for each installation of the control system, requiring a considerable time effort and being an error prone verification activity. To automate a safe passage from abstract tests, related to the so called generic software application, to any specific installation, an algorithm is provided, starting from a reference architecture and a state-based behavioural model of the control software. The presented approach has been applied to a railway interlocking system, demonstrating its feasibility and effectiveness in several years of testing experience

    Automatic instantiation of abstract tests to specific configurations for large critical control systems

    Get PDF
    Computer-based control systems have grown in size, complexity, distribution and criticality. In this paper a methodology is presented to perform an ‘abstract testing’ of such large control systems in an efficient way: an abstract test is specified directly from system functional requirements and has to be instantiated in more test runs to cover a specific configuration, comprising any number of control entities (sensors, actuators and logic processes). Such a process is usually performed by hand for each installation of the control system, requiring a considerable time effort and being an error-prone verification activity. To automate a safe passage from abstract tests, related to the so-called generic software application, to any specific installation, an algorithm is provided, starting from a reference architecture and a statebased behavioural model of the control software. The presented approach has been applied to a railway interlocking system, demonstrating its feasibility and effectiveness in several years of testing experience

    Co-Emulation of Scan-Chain Based Designs Utilizing SCE-MI Infrastructure

    Full text link
    Simulation times of complex System-on-Chips (SoC) have grown exponentially as designs reach the multi-million ASIC gate range. Verification teams have adopted emulation as a prominent methodology, incorporating high-level testbenches and FPGA/ASIC hardware for system-level testing (SLT). In addition to SLT, emulation enables software teams to incorporate software applications with cycle-accurate hardware early on in the design cycle. The Standard for Co-Emulation Modeling Interface (SCE-MI) developed by the Accelera Initiative, is a widely used communication protocol for emulation which has been accepted by major electronic design automation (EDA) companies. Scan-chain is a design-for-test (DFT) methodology used for testing digital circuits. To allow more controllability and observability of the system, design registers are transformed into scan registers, allowing verification teams to shift in test vectors and observe the behavior of combinatorial logic. As SoC complexity increases, thousands of registers can be used in a design, which makes it difficult to implement full-scan testing. More so, as the complexity of the scan algorithm is dependent on the number of design registers, large SoC scan designs can no longer be verified in RTL simulation unless portioned into smaller sub-blocks. To complete a full scan cycle in RTL simulation for large system-level designs, it may take hours, days, or even weeks depending on the complexity of the circuit. This thesis proposes a methodology to decrease scan-chain verification time utilizing SCE-MI protocol and an FPGA-based emulation platform. A high-level (SystemC) testbench and FPGA synthesizable hardware transactor models are developed for the ISCAS89 S400 benchmark circuit for high-speed communication between the CPU workstation and FPGA emulator. The emulation results are compared to other verification methodologies, and found to be 82% faster than regular RTL simulation. In addition, the emulation runs in the MHz speed range, allowing the incorporation of software applications, drivers, and operating systems, as opposed to the Hz range in RTL simulation

    An Adaptive Design Methodology for Reduction of Product Development Risk

    Full text link
    Embedded systems interaction with environment inherently complicates understanding of requirements and their correct implementation. However, product uncertainty is highest during early stages of development. Design verification is an essential step in the development of any system, especially for Embedded System. This paper introduces a novel adaptive design methodology, which incorporates step-wise prototyping and verification. With each adaptive step product-realization level is enhanced while decreasing the level of product uncertainty, thereby reducing the overall costs. The back-bone of this frame-work is the development of Domain Specific Operational (DOP) Model and the associated Verification Instrumentation for Test and Evaluation, developed based on the DOP model. Together they generate functionally valid test-sequence for carrying out prototype evaluation. With the help of a case study 'Multimode Detection Subsystem' the application of this method is sketched. The design methodologies can be compared by defining and computing a generic performance criterion like Average design-cycle Risk. For the case study, by computing Average design-cycle Risk, it is shown that the adaptive method reduces the product development risk for a small increase in the total design cycle time.Comment: 21 pages, 9 figure

    Process of designing robust, dependable, safe and secure software for medical devices: Point of care testing device as a case study

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Copyright © 2013 Sivanesan Tulasidas et al. This paper presents a holistic methodology for the design of medical device software, which encompasses of a new way of eliciting requirements, system design process, security design guideline, cloud architecture design, combinatorial testing process and agile project management. The paper uses point of care diagnostics as a case study where the software and hardware must be robust, reliable to provide accurate diagnosis of diseases. As software and software intensive systems are becoming increasingly complex, the impact of failures can lead to significant property damage, or damage to the environment. Within the medical diagnostic device software domain such failures can result in misdiagnosis leading to clinical complications and in some cases death. Software faults can arise due to the interaction among the software, the hardware, third party software and the operating environment. Unanticipated environmental changes and latent coding errors lead to operation faults despite of the fact that usually a significant effort has been expended in the design, verification and validation of the software system. It is becoming increasingly more apparent that one needs to adopt different approaches, which will guarantee that a complex software system meets all safety, security, and reliability requirements, in addition to complying with standards such as IEC 62304. There are many initiatives taken to develop safety and security critical systems, at different development phases and in different contexts, ranging from infrastructure design to device design. Different approaches are implemented to design error free software for safety critical systems. By adopting the strategies and processes presented in this paper one can overcome the challenges in developing error free software for medical devices (or safety critical systems).Brunel Open Access Publishing Fund

    Application of flight systems methodologies to the validation of knowledge-based systems

    Get PDF
    Flight and mission-critical systems are verified, qualified for flight, and validated using well-known and well-established techniques. These techniques define the validation methodology used for such systems. In order to verify, qualify, and validate knowledge-based systems (KBS's), the methodology used for conventional systems must be addressed, and the applicability and limitations of that methodology to KBS's must be identified. The author presents an outline of how this approach to the validation of KBS's is being developed and used at the Dryden Flight Research Facility of the NASA Ames Research Center
    corecore