1,882 research outputs found

    Dependence relationships between Gene Ontology terms based on TIGR gene product annotations

    Get PDF
    The Gene Ontology is an important tool for the representation and processing of information about gene products and functions. It provides controlled vocabularies for the designations of cellular components, molecular functions, and biological processes used in the annotation of genes and gene products. These constitute three separate ontologies, of cellular components), molecular functions and biological processes, respectively. The question we address here is: how are the terms in these three separate ontologies related to each other? We use statistical methods and formal ontological principles as a first step towards finding answers to this question

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web

    Requirements for Information Extraction for Knowledge Management

    Get PDF
    Knowledge Management (KM) systems inherently suffer from the knowledge acquisition bottleneck - the difficulty of modeling and formalizing knowledge relevant for specific domains. A potential solution to this problem is Information Extraction (IE) technology. However, IE was originally developed for database population and there is a mismatch between what is required to successfully perform KM and what current IE technology provides. In this paper we begin to address this issue by outlining requirements for IE based KM

    Ontology of core data mining entities

    Get PDF
    In this article, we present OntoDM-core, an ontology of core data mining entities. OntoDM-core defines themost essential datamining entities in a three-layered ontological structure comprising of a specification, an implementation and an application layer. It provides a representational framework for the description of mining structured data, and in addition provides taxonomies of datasets, data mining tasks, generalizations, data mining algorithms and constraints, based on the type of data. OntoDM-core is designed to support a wide range of applications/use cases, such as semantic annotation of data mining algorithms, datasets and results; annotation of QSAR studies in the context of drug discovery investigations; and disambiguation of terms in text mining. The ontology has been thoroughly assessed following the practices in ontology engineering, is fully interoperable with many domain resources and is easy to extend

    A Machine Learning Based Analytical Framework for Semantic Annotation Requirements

    Full text link
    The Semantic Web is an extension of the current web in which information is given well-defined meaning. The perspective of Semantic Web is to promote the quality and intelligence of the current web by changing its contents into machine understandable form. Therefore, semantic level information is one of the cornerstones of the Semantic Web. The process of adding semantic metadata to web resources is called Semantic Annotation. There are many obstacles against the Semantic Annotation, such as multilinguality, scalability, and issues which are related to diversity and inconsistency in content of different web pages. Due to the wide range of domains and the dynamic environments that the Semantic Annotation systems must be performed on, the problem of automating annotation process is one of the significant challenges in this domain. To overcome this problem, different machine learning approaches such as supervised learning, unsupervised learning and more recent ones like, semi-supervised learning and active learning have been utilized. In this paper we present an inclusive layered classification of Semantic Annotation challenges and discuss the most important issues in this field. Also, we review and analyze machine learning applications for solving semantic annotation problems. For this goal, the article tries to closely study and categorize related researches for better understanding and to reach a framework that can map machine learning techniques into the Semantic Annotation challenges and requirements

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    Evolution in the Ontology Based Knowledge Management Systems

    Get PDF
    An ontology-based knowledge management system uses an ontology to represent explicit specification of a business domain and to serve as a backbone for providing and searching for knowledge sources. But, dynamically changing business environment implies changes in the conceptualisation of a business domain that are reflected on the underlying domain ontologies. Consequently, these changes have effects on the performance and validity of the KM system. In this paper we make an analysis of the problems induced by using not-evolved ontologies and present an approach for enabling consistency of the description of knowledge sources in an ontology-based KM system in the case of changes in the domain ontology. This approach is based on our research on ontology evolution and ontology-based annotation of documents. The proposed method is implemented in our semantic annotation framework so that efficient acquiring and maintaining of ontology-based metadata is supported

    Ontology Learning and Semantic Annotation: a Necessary Symbiosis

    Get PDF
    Semantic annotation of text requires the dynamic merging of linguistically structured information and a ?world model?, usually represented as a domain-specific ontology. On the other hand, the process of engineering a domain-ontology through semi-automatic ontology learning system requires the availability of a considerable amount of semantically annotated documents. Facing this bootstrapping paradox requires an incremental process of annotation-acquisition-annotation, whereby domain-specific knowledge is acquired from linguistically-annotated texts and then projected back onto texts for extra linguistic information to be annotated and further knowledge layers to be extracted. The presented methodology is a first step in the direction of a full ?virtuous? circle where the semantic annotation platform and the evolving ontology interact in symbiosis. As a case study we have chosen the semantic annotation of product catalogues. We propose a hybrid approach, combining pattern matching techniques to exploit the regular structure of product descriptions in catalogues, and Natural Language Processing techniques which are resorted to analyze natural language descriptions. The semantic annotation involves the access to the ontology, semi-automatically bootstrapped with an ontology learning tool from annotated collections of catalogues

    Inductive learning of the surgical workflow model through video annotations

    Get PDF
    partially_open5siSurgical workflow modeling is becoming increasingly useful to train surgical residents for complex surgical procedures. Rule-based surgical workflows have shown to be useful to create context-aware systems. However, manually constructing production rules is a time-intensive and laborious task. With the expansion of new technologies, large video archive can be created and annotated exploiting and storing the expert’s knowledge. This paper presents a prototypical study of automatic generation of production rules, in the Horn-clause, using the First Order Inductive Learner (FOIL) algorithm applied to annotated surgical videos of Thoracentesis procedure and of its feasibility to use in context-aware system framework. The algorithm was able to learn 18 rules for surgical workflow model with 0.88 precision, and 0.94 F1 score on the standard video annotation data, representing entities of the surgical workflow, which was used to retrieve contextual information on Thoracentesis workflow for its application to surgical training.openNakawala, HIRENKUMAR CHANDRAKANT; DE MOMI, Elena; Pescatori, Erica Laura; Morelli, Anna; Ferrigno, GiancarloNakawala, HIRENKUMAR CHANDRAKANT; DE MOMI, Elena; Pescatori, Erica Laura; Morelli, Anna; Ferrigno, Giancarl

    Trajectory Data Analysis in Support of Understanding Movement Patterns: A Data Mining Approach

    Get PDF
    Recent developments in wireless technology, mobility and networking infrastructures increased the amounts of data being captured every second. Data captured from the digital traces of moving objects and devices is called trajectory data. With the increasing volume of spatiotemporal trajectories, constructive and meaningful knowledge needs to be extracted. In this paper, a conceptual framework is proposed to apply data mining techniques on trajectories and semantically enrich the extracted patterns. A design science research approach is followed, where the framework is tested and evaluated using a prototypical instantiation, built to support decisions in the context of the Egyptian tourism industry. By applying association rule mining, the revealed time-stamped frequently visited regions of interest (ROI) patterns show that specific semantic annotations are required at early stages in the process and on lower levels of detail, refuting the presumption of cross-application usable patterns
    • …
    corecore