15,079 research outputs found

    Performance of direct-oversampling correlator-type receivers in chaos-based DS-CDMA systems over frequency non-selective fading channels

    Get PDF
    In this paper, we present a study on the performance of direct-oversampling correlator-type receivers in chaos-based direct-sequence code division multiple access systems over frequency non-selective fading channels. At the input, the received signal is sampled at a sampling rate higher than the chip rate. This oversampling step is used to precisely determine the delayed-signal components from multipath fading channels, which can be combined together by a correlator for the sake of increasing the SNR at its output. The main advantage of using direct-oversampling correlator-type receivers is not only their low energy consumption due to their simple structure, but also their ability to exploit the non-selective fading characteristic of multipath channels to improve the overall system performance in scenarios with limited data speeds and low energy requirements, such as low-rate wireless personal area networks. Mathematical models in discrete-time domain for the conventional transmitting side with multiple access operation, the generalized non-selective Rayleigh fading channel, and the proposed receiver are provided and described. A rough theoretical bit-error-rate (BER) expression is first derived by means of Gaussian approximation. We then define the main component in the expression and build its probability mass function through numerical computation. The final BER estimation is carried out by integrating the rough expression over possible discrete values of the PFM. In order to validate our findings, PC simulation is performed and simulated performance is compared with the corresponding estimated one. Obtained results show that the system performance get better with the increment of the number of paths in the channel.Peer ReviewedPostprint (author's final draft

    Analog Network Coding for Multi-User Spread-Spectrum Communication Systems

    Full text link
    This work presents another look at an analog network coding scheme for multi-user spread-spectrum communication systems. Our proposed system combines coding and cooperation between a relay and users to boost the throughput and to exploit interference. To this end, each pair of users, A\mathcal{A} and B\mathcal{B}, that communicate with each other via a relay R\mathcal{R} shares the same spreading code. The relay has two roles, it synchronizes network transmissions and it broadcasts the combined signals received from users. From user B\mathcal{B}'s point of view, the signal is decoded, and then, the data transmitted by user A\mathcal{A} is recovered by subtracting user B\mathcal{B}'s own data. We derive the analytical performance of this system for an additive white Gaussian noise channel with the presence of multi-user interference, and we confirm its accuracy by simulation.Comment: 6 pages, 2 figures, to appear at IEEE WCNC'1

    A novel approach to security enhancement of chaotic DSSS systems

    Get PDF
    In this paper, we propose a novel approach to the enhancement of physical layer security for chaotic direct-sequence spread-spectrum (DSSS) communication systems. The main idea behind our proposal is to vary the symbol period according to the behavior of the chaotic spreading sequence. As a result, the symbol period and the spreading sequence vary chaotically at the same time. This simultaneous variation aims at protecting DSSS-based communication systems from the blind estimation attacks in the detection of the symbol period. Discrete-time models for spreading and despreading schemes are presented and analyzed. Multiple access performance of the proposed technique in the presence of additional white Gaussian noise (AWGN) is determined by computer simulations. The increase in security at the physical layer is also evaluated by numerical results. Obtained results show that our proposed technique can protect the system against attacks based on the detection of the symbol period, even if the intruder has full information on the used chaotic sequence.Peer ReviewedPostprint (author's final draft

    Binary time series generated by chaotic logistic maps

    Get PDF
    This paper examines stochastic pairwise dependence structures in binary time series obtained from discretised versions of standard chaotic logistic maps. It is motivated by applications in communications modelling which make use of so-called chaotic binary sequences. The strength of non-linear stochastic dependence of the binary sequences is explored. In contrast to the original chaotic sequence, the binary version is non-chaotic with non-Markovian non-linear dependence, except in a special case. Marginal and joint probability distributions, and autocorrelation functions are elicited. Multivariate binary and more discretised time series from a single realisation of the logistic map are developed from the binary paradigm. Proposals for extension of the methodology to other cases of the general logistic map are developed. Finally, a brief illustration of the place of chaos-based binary processes in chaos communications is given.Binary sequence; chaos; chaos communications; dependence; discretisation; invariant distribution; logistic map; randomness

    QoE-Based Low-Delay Live Streaming Using Throughput Predictions

    Full text link
    Recently, HTTP-based adaptive streaming has become the de facto standard for video streaming over the Internet. It allows clients to dynamically adapt media characteristics to network conditions in order to ensure a high quality of experience, that is, minimize playback interruptions, while maximizing video quality at a reasonable level of quality changes. In the case of live streaming, this task becomes particularly challenging due to the latency constraints. The challenge further increases if a client uses a wireless network, where the throughput is subject to considerable fluctuations. Consequently, live streams often exhibit latencies of up to 30 seconds. In the present work, we introduce an adaptation algorithm for HTTP-based live streaming called LOLYPOP (Low-Latency Prediction-Based Adaptation) that is designed to operate with a transport latency of few seconds. To reach this goal, LOLYPOP leverages TCP throughput predictions on multiple time scales, from 1 to 10 seconds, along with an estimate of the prediction error distribution. In addition to satisfying the latency constraint, the algorithm heuristically maximizes the quality of experience by maximizing the average video quality as a function of the number of skipped segments and quality transitions. In order to select an efficient prediction method, we studied the performance of several time series prediction methods in IEEE 802.11 wireless access networks. We evaluated LOLYPOP under a large set of experimental conditions limiting the transport latency to 3 seconds, against a state-of-the-art adaptation algorithm from the literature, called FESTIVE. We observed that the average video quality is by up to a factor of 3 higher than with FESTIVE. We also observed that LOLYPOP is able to reach a broader region in the quality of experience space, and thus it is better adjustable to the user profile or service provider requirements.Comment: Technical Report TKN-16-001, Telecommunication Networks Group, Technische Universitaet Berlin. This TR updated TR TKN-15-00

    Self-Learning Hot Data Prediction: Where Echo State Network Meets NAND Flash Memories

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Well understanding the access behavior of hot data is significant for NAND flash memory due to its crucial impact on the efficiency of garbage collection (GC) and wear leveling (WL), which respectively dominate the performance and life span of SSD. Generally, both GC and WL rely greatly on the recognition accuracy of hot data identification (HDI). However, in this paper, the first time we propose a novel concept of hot data prediction (HDP), where the conventional HDI becomes unnecessary. First, we develop a hybrid optimized echo state network (HOESN), where sufficiently unbiased and continuously shrunk output weights are learnt by a sparse regression based on L2 and L1/2 regularization. Second, quantum-behaved particle swarm optimization (QPSO) is employed to compute reservoir parameters (i.e., global scaling factor, reservoir size, scaling coefficient and sparsity degree) for further improving prediction accuracy and reliability. Third, in the test on a chaotic benchmark (Rossler), the HOESN performs better than those of six recent state-of-the-art methods. Finally, simulation results about six typical metrics tested on five real disk workloads and on-chip experiment outcomes verified from an actual SSD prototype indicate that our HOESN-based HDP can reliably promote the access performance and endurance of NAND flash memories.Peer reviewe
    • …
    corecore