118 research outputs found

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Energy efficient data transmission using multiobjective improved remora optimization algorithm for wireless sensor network with mobile sink

    Get PDF
    A wireless sensor network (WSN) is a collection of nodes fitted with small sensors and transceiver elements. Energy consumption, data loss, and transmission delays are the major drawback of creating mobile sinks. For instance, battery life and data latency might result in node isolation, which breaks the link between nodes in the network. These issues have been avoided by means of mobile data sinks, which move between nodes with connection issues. Therefore, energy aware multiobjective improved remora optimization algorithm and multiobjective ant colony optimization (EA-MIROA-MACO) is proposed in this research to improve the WSN’s energy efficiency by eliminating node isolation issue. MIRO is utilized to pick the optimal cluster heads (CHs), while multiobjective ant colony optimization (MACO) is employed to find the path through the CHs. The EA-MIROA-MACO aims to optimize energy consumption in nodes and enhance data transmission within a WSN. The analysis of EA-MIROA-MACO’s performance is conducted by considering the number of alive along with dead nodes, average residual energy, and network lifespan. The EA-MIROA-MACO is compared with traditional approaches such as mobile sink and fuzzy based relay node routing (MSFBRR) protocol as well as hybrid neural network (HNN). The EA-MIROA-MACO demonstrates a higher number of alive nodes, specifically 192, over the MSFBRR and HNN for 2,000 rounds

    Formal modelling and analysis of denial of services attacks in wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) have attracted considerable research attention in recent years because of the perceived potential benefits offered by self-organising, multi-hop networks consisting of low-cost and small wireless devices for monitoring or control applications in di±cult environments. WSN may be deployed in hostile or inaccessible environments and are often unattended. These conditions present many challenges in ensuring that WSNs work effectively and survive long enough to fulfil their functionalities. Securing a WSN against any malicious attack is a particular challenge. Due to the limited resources of nodes, traditional routing protocols are not appropriate in WSNs and innovative methods are used to route data from source nodes to sink nodes (base stations). To evaluate the routing protocols against DoS attacks, an innovative design method of combining formal modelling and computer simulations has been proposed. This research has shown that by using formal modelling hidden bugs (e.g. vulnerability to attacks) in routing protocols can be detected automatically. In addition, through a rigorous testing, a new routing protocol, RAEED (Robust formally Analysed protocol for wirEless sEnsor networks Deployment), was developed which is able to operate effectively in the presence of hello flood, rushing, wormhole, black hole, gray hole, sink hole, INA and jamming attacks. It has been proved formally and using computer simulation that the RAEED can pacify these DoS attacks. A second contribution of this thesis relates to the development of a framework to check the vulnerability of different routing protocols against Denial of Service(DoS) attacks. This has allowed us to evaluate formally some existing and known routing protocols against various DoS attacks iand these include TinyOS Beaconing, Authentic TinyOS using uTesla, Rumour Routing, LEACH, Direct Diffusion, INSENS, ARRIVE and ARAN protocols. This has resulted in the development of an innovative and simple defence technique with no additional hardware cost for deployment against wormhole and INA attacks. In the thesis, the detection of weaknesses in INSENS, Arrive and ARAN protocols was also addressed formally. Finally, an e±cient design methodology using a combination of formal modelling and simulation is propose to evaluate the performances of routing protocols against DoS attacks

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Key management for wireless sensor network security

    Get PDF
    Wireless Sensor Networks (WSNs) have attracted great attention not only in industry but also in academia due to their enormous application potential and unique security challenges. A typical sensor network can be seen as a combination of a number of low-cost sensor nodes which have very limited computation and communication capability, memory space, and energy supply. The nodes are self-organized into a network to sense or monitor surrounding information in an unattended environment, while the self-organization property makes the networks vulnerable to various attacks.Many cryptographic mechanisms that solve network security problems rely directly on secure and efficient key management making key management a fundamental research topic in the field of WSNs security. Although key management for WSNs has been studied over the last years, the majority of the literature has focused on some assumed vulnerabilities along with corresponding countermeasures. Specific application, which is an important factor in determining the feasibility of the scheme, has been overlooked to a large extent in the existing literature.This thesis is an effort to develop a key management framework and specific schemes for WSNs by which different types of keys can be established and also can be distributed in a self-healing manner; explicit/ implicit authentication can be integrated according to the security requirements of expected applications. The proposed solutions would provide reliable and robust security infrastructure for facilitating secure communications in WSNs.There are five main parts in the thesis. In Part I, we begin with an introduction to the research background, problems definition and overview of existing solutions. From Part II to Part IV, we propose specific solutions, including purely Symmetric Key Cryptography based solutions, purely Public Key Cryptography based solutions, and a hybrid solution. While there is always a trade-off between security and performance, analysis and experimental results prove that each proposed solution can achieve the expected security aims with acceptable overheads for some specific applications. Finally, we recapitulate the main contribution of our work and identify future research directions in Part V

    Solutions and Tools for Secure Communication in Wireless Sensor Networks

    Get PDF
    Secure communication is considered a vital requirement in Wireless Sensor Network (WSN) applications. Such a requirement embraces different aspects, including confidentiality, integrity and authenticity of exchanged information, proper management of security material, and effective prevention and reaction against security threats and attacks. However, WSNs are mainly composed of resource-constrained devices. That is, network nodes feature reduced capabilities, especially in terms of memory storage, computing power, transmission rate, and energy availability. As a consequence, assuring secure communication in WSNs results to be more difficult than in other kinds of network. In fact, trading effectiveness of adopted solutions with their efficiency becomes far more important. In addition, specific device classes or technologies may require to design ad hoc security solutions. Also, it is necessary to efficiently manage security material, and dynamically cope with changes of security requirements. Finally, security threats and countermeasures have to be carefully considered since from the network design phase. This Ph.D. dissertion considers secure communication in WSNs, and provides the following contributions. First, we provide a performance evaluation of IEEE 802.15.4 security services. Then, we focus on the ZigBee technology and its security services, and propose possible solutions to some deficiencies and inefficiencies. Second, we present HISS, a highly scalable and efficient key management scheme, able to contrast collusion attacks while displaying a graceful degradation of performance. Third, we present STaR, a software component for WSNs that secures multiple traffic flows at the same time. It is transparent to the application, and provides runtime reconfigurability, thus coping with dynamic changes of security requirements. Finally, we describe ASF, our attack simulation framework for WSNs. Such a tool helps network designers to quantitatively evaluate effects of security attacks, produce an attack ranking based on their severity, and thus select the most appropriate countermeasures

    Application framework for wireless sensor networks [thesis]

    Get PDF
    Wireless Sensor Networks (WSNs) are based on innovative technologies that had revolutionized the methods in which we interact with the environment; i.e., through sensing the physical (e.g., fire motion, contact) and chemical (e.g., molecular concentration) properties of the natural surroundings. The hardware in which utilized by WSNs is rapidly evolving into sophisticated platforms that seamlessly integrate with different vendors and protocols (plug-n-play). In this thesis, we propose a WSN framework which provides assistance with monitoring environmental conditions; we focus on three main applications which include: a. Air-quality monitoring, b. Gas-leak detection, and c. Fire sensing. The framework involves four specifications: 1. Over the air programming (OTAP), 2. Network interconnections, 3. Sensors manageability, and 4. Alarm signaling. Their aim is to enhance the internetwork relations between the WSNs and the outside-world (i.e., main users, clients, or audience); by creating a medium in which devices efficiently communicate, independent of location or infrastructure (e.g., Internet), in order to exchange data among networked-objects and their users. Therefore, we propose a WSN-over-IP architecture which provides several renowned services of the Internet; the major functionalities include: live-data streaming (real-time), e-mailing, cloud storage (external servers), and network technologies (e.g., LAN or WLAN). WSNs themselves operate independently of the Internet; i.e., their operation involve unique protocols and specific hardware requirements which are incompatible with common network platforms (e.g., within home network infrastructure). Hybrid technologies are those which support multiple data-communication protocols within a single device; their main capabilities involve seamless integration and interoperability of different hardware vendors. We propose an overall architecture based on hybrid communication technology in which data is transmitted using three types of protocols: 802.11 (Wi-Fi), 802.15.4 and Digimesh (WSN)

    A Comprehensive Survey on Routing and Security in Mobile Wireless Sensor Networks

    Get PDF
    With the continuous advances in mobile wirelesssensor networks (MWSNs), the research community hasresponded to the challenges and constraints in the design of thesenetworks by proposing efficient routing protocols that focus onparticular performance metrics such as residual energy utilization,mobility, topology, scalability, localization, data collection routing,Quality of Service (QoS), etc. In addition, the introduction ofmobility in WSN has brought new challenges for the routing,stability, security, and reliability of WSNs. Therefore, in thisarticle, we present a comprehensive and meticulous investigationin the routing protocols and security challenges in the theory ofMWSNs which was developed in recent years
    corecore