3,345 research outputs found

    Recurrent Neural Networks For Accurate RSSI Indoor Localization

    Full text link
    This paper proposes recurrent neuron networks (RNNs) for a fingerprinting indoor localization using WiFi. Instead of locating user's position one at a time as in the cases of conventional algorithms, our RNN solution aims at trajectory positioning and takes into account the relation among the received signal strength indicator (RSSI) measurements in a trajectory. Furthermore, a weighted average filter is proposed for both input RSSI data and sequential output locations to enhance the accuracy among the temporal fluctuations of RSSI. The results using different types of RNN including vanilla RNN, long short-term memory (LSTM), gated recurrent unit (GRU) and bidirectional LSTM (BiLSTM) are presented. On-site experiments demonstrate that the proposed structure achieves an average localization error of 0.750.75 m with 80%80\% of the errors under 11 m, which outperforms the conventional KNN algorithms and probabilistic algorithms by approximately 30%30\% under the same test environment.Comment: Received signal strength indicator (RSSI), WiFi indoor localization, recurrent neuron network (RNN), long shortterm memory (LSTM), fingerprint-based localizatio

    Accurate position tracking with a single UWB anchor

    Full text link
    Accurate localization and tracking are a fundamental requirement for robotic applications. Localization systems like GPS, optical tracking, simultaneous localization and mapping (SLAM) are used for daily life activities, research, and commercial applications. Ultra-wideband (UWB) technology provides another venue to accurately locate devices both indoors and outdoors. In this paper, we study a localization solution with a single UWB anchor, instead of the traditional multi-anchor setup. Besides the challenge of a single UWB ranging source, the only other sensor we require is a low-cost 9 DoF inertial measurement unit (IMU). Under such a configuration, we propose continuous monitoring of UWB range changes to estimate the robot speed when moving on a line. Combining speed estimation with orientation estimation from the IMU sensor, the system becomes temporally observable. We use an Extended Kalman Filter (EKF) to estimate the pose of a robot. With our solution, we can effectively correct the accumulated error and maintain accurate tracking of a moving robot.Comment: Accepted by ICRA202

    Long-term experiments with an adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robotā€™s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metric-topological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability

    A bank of unscented Kalman filters for multimodal human perception with mobile service robots

    Get PDF
    A new generation of mobile service robots could be ready soon to operate in human environments if they can robustly estimate position and identity of surrounding people. Researchers in this field face a number of challenging problems, among which sensor uncertainties and real-time constraints. In this paper, we propose a novel and efficient solution for simultaneous tracking and recognition of people within the observation range of a mobile robot. Multisensor techniques for legs and face detection are fused in a robust probabilistic framework to height, clothes and face recognition algorithms. The system is based on an efficient bank of Unscented Kalman Filters that keeps a multi-hypothesis estimate of the person being tracked, including the case where the latter is unknown to the robot. Several experiments with real mobile robots are presented to validate the proposed approach. They show that our solutions can improve the robot's perception and recognition of humans, providing a useful contribution for the future application of service robotics

    Cooperative localization for mobile agents: a recursive decentralized algorithm based on Kalman filter decoupling

    Full text link
    We consider cooperative localization technique for mobile agents with communication and computation capabilities. We start by provide and overview of different decentralization strategies in the literature, with special focus on how these algorithms maintain an account of intrinsic correlations between state estimate of team members. Then, we present a novel decentralized cooperative localization algorithm that is a decentralized implementation of a centralized Extended Kalman Filter for cooperative localization. In this algorithm, instead of propagating cross-covariance terms, each agent propagates new intermediate local variables that can be used in an update stage to create the required propagated cross-covariance terms. Whenever there is a relative measurement in the network, the algorithm declares the agent making this measurement as the interim master. By acquiring information from the interim landmark, the agent the relative measurement is taken from, the interim master can calculate and broadcast a set of intermediate variables which each robot can then use to update its estimates to match that of a centralized Extended Kalman Filter for cooperative localization. Once an update is done, no further communication is needed until the next relative measurement

    Development of mobile robot and localization system

    Get PDF
    Mobile robot is currently being actively developed for both civilian and military use to perform dull, dirty and dangerous activities. Mobile robot is autonomous in nature, capable of operating over a wide variety of terrain and can be characterized by different speed, sensor range and weapons capabilities. Thus, the research involves designing an indoor mobile robot and creating algorithm for the mobile robot to localize. As such, the purpose of this thesis is to develop the localization of the mobile robot based on Extended Kalman Filter (EKF) method. The process begins with the mobile robot mechanical design where a selection of wheel types and types of locomotion are selected. Then the odometry corrections using a method called University of Massachusetts Benchmark (UMBmark ) method has been used to improve the encoder readings. As a part of the research contribution, a Circular Bencmark (CBmark) method is created in order to improve the motor speed by calibrating the encoder speed readings on each motor. Then the algorithm is built based on EKF method and tested via simulations. The simulation runs on two different cases that require the mobile robot to move to the target location while the time to accomplish and the distance between the mobile robot center gravity (cog) are taken. Then, the same algorithms are put on the hardware and the experiment runs same as in simulations. The performance of the mobile robot is compared between simulations and the real experiment based on graph of performance

    Robust mobile robot localization based on a security laser: An industry case study

    Get PDF
    This paper aims to address a mobile robot localization system that avoids using a dedicated laser scanner, making it possible to reduce implementation costs and the robot's size. The system has enough precision and robustness to meet the requirements of industrial environments. Design/methodology/approach - Using an algorithm for artificial beacon detection combined with a Kalman Filter and an outlier rejection method, it was possible to enhance the precision and robustness of the overall localization system. Findings - Usually, industrial automatic guide vehicles feature two kinds of lasers: one for navigation placed on top of the robot and another for obstacle detection (security lasers). Recently, security lasers extended their output data with obstacle distance (contours) and reflectivity. These new features made it possible to develop a novel localization system based on a security laser. Research limitations/implications - Once the proposed methodology is completely validated, in the future, a scheme for global localization and failure detection should be addressed. Practical implications - This paper presents a comparison between the presented approach and a commercial localization system for industry. The proposed algorithms were tested in an industrial application under realistic working conditions. Social implications - The presented methodology represents a gain in the effective cost of the mobile robot platform, as it discards the need for a dedicated laser for localization purposes. Originality/value - This paper presents a novel approach that benefits from the presence of a security laser on mobile robots (mandatory sensor when considering industrial applications), using it simultaneously with other sensors, not only to guarantee safety conditions during operation but also to locate the robot in the environment. This paper is also valuable because of the comparison made with a commercialized system, as well as the tests conducted in real industrial environments, which prove that the approach presented is suitable for working under these demanding conditions.Project "TEC4Growth" - Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-0145-FEDER-000020" is fnanced by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF).info:eu-repo/semantics/publishedVersio

    Mobile robot localization using a Kalman filter and relative bearing measurements to known landmarks

    Get PDF
    This paper discusses mobile robot localization using a single, fixed camera that is capable of detecting predefined landmarks in the environment. For each visible landmark, the camera provides a relative bearing but not a relative range. This research represents work toward an inexpensive sensor that could be added to a mobile robot in order to provide more accurate estimates of the robot\u27s location. It uses the Kalman filter as a framework, which is a proven method for incorporating sensor data into navigation problems. In the simulations presented later, it is assumed that the filter can perform accurate feature recognition. In the experimental setup, however, a webcam and an open source library are used to recognize and track bearing to a set of unique markers. Although this research requires that the landmark locations be known, in contrast to research in simultaneous localization and mapping, the results are still useful in an industrial setting where placing known landmarks would be acceptable

    Stochastic Modeling for Mobile Manipulators

    Get PDF
    Mobile manipulators are valuable and highly desired in many fields, especially in industrial environments. However, determining the end effector position has been challenging for scenarios where the base moves at the same time that the arm follows commands to perform specific tasks. Earlier works have attempted to dynamically evaluate the problem of positioning error for mobile manipulators, but there is still room for further improvement. In this thesis, we devise a dynamical model that leverages stochastic search strategies for mobile manipulators. More specifically, we develop a dynamic model that estimates the position of the robot using an Unscented Kalman filter. Simulations using the Robot Operating System (ROS) and Gazebo were carried out to evaluate our model. Our results for the stochastic method show that it outperforms a deterministic approach (spiral search) under specific Kalman filter covariances of the process and observation noises. Compared to the state of the art, our proposed approach is more robust and efficient, proving to work under different arrangement scenarios with significant better performance
    • ā€¦
    corecore