207 research outputs found

    A Method to Design Compact Dual-rail Asynchronous Primitives

    Get PDF
    ISBN 978-3-540-29013-1International audienceThis paper aims at introducing a method to quickly design compact dual-rail asynchronous primitives. If the proposed cells are dedicated to the design of dual-rail asynchronous circuits, it is also possible to use such primitives to design dual-rail synchronous circuits. The method detailed herein has been applied to develop the schematics of various basic primitives. The performances of the 130nm obtained cells have been simulated and compared with more traditional implementations

    An efficient asynchronous spatial division multiplexing router for network-on-chip on the hardware platform

    Get PDF
    The quasi-delay-insensitive (QDI) based asynchronous network-on-chip (ANoC) has several advantages over clock-based synchronous network-on-chips (NoCs). The asynchronous router uses a virtual channel (VC) as a primary flow-control mechanism however, the spatial division multiplexing (SDM) based mechanism performs better over input traffics over VC. This manuscript uses an asynchronous spatial division multiplexing (ASDM) based router for NoC architecture on a field-programmable gate array (FPGA) platform. The ASDM router is configurable to different bandwidths and VCs. The ASDM router mainly contains input-output (I/O) buffers, a switching allocator, and a crossbar unit. The 4-phase 1-of-4 dual-rail protocol is used to construct the I/O buffers. The performance of the ASDM router is analyzed in terms of lower urinary tract symptoms (LUTs) (chip area), delay, latency, and throughput parameters. The work is implemented using Verilog-HDL with Xilinx ISE 14.7 on artix-7 FPGA. The ASDM router achieves % chip area and obtains 0.8 ns of latency with a throughput of 800 Mfps. The proposed router is compared with existing asynchronous approaches with improved latency and throughput metrics

    An asynchronous forth microprocessor.

    Get PDF
    Ping-Ki Tsang.Thesis (M.Phil.)--Chinese University of Hong Kong, 2000.Includes bibliographical references (leaves 87-95).Abstracts in English and Chinese.Abstract --- p.iAcknowledgments --- p.iiiChapter 1 --- Introduction --- p.1Chapter 1.1 --- Motivation and Aims --- p.1Chapter 1.2 --- Contributions --- p.3Chapter 1.3 --- Overview of the Thesis --- p.4Chapter 2 --- Asynchronous Logic g --- p.6Chapter 2.1 --- Motivation --- p.6Chapter 2.2 --- Timing Models --- p.9Chapter 2.2.1 --- Fundamental-Mode Model --- p.9Chapter 2.2.2 --- Delay-Insensitive Model --- p.10Chapter 2.2.3 --- QDI and Speed-Independent Models --- p.11Chapter 2.3 --- Asynchronous Signalling Protocols --- p.12Chapter 2.3.1 --- 2-phase Handshaking Protocol --- p.12Chapter 2.3.2 --- 4-phase Handshaking Protocol --- p.13Chapter 2.4 --- Data Representations --- p.14Chapter 2.4.1 --- Dual Rail Coded Data --- p.15Chapter 2.4.2 --- Bundled Data --- p.15Chapter 2.5 --- Previous Asynchronous Processors --- p.16Chapter 2.6 --- Summary --- p.20Chapter 3 --- The MSL16 Architecture --- p.21Chapter 3.1 --- RISC Machines --- p.21Chapter 3.2 --- Stack Machines --- p.23Chapter 3.3 --- Forth and its Applications --- p.24Chapter 3.4 --- MSL16 --- p.26Chapter 3.4.1 --- Architecture --- p.28Chapter 3.4.2 --- Instruction Set --- p.30Chapter 3.4.3 --- The Datapath --- p.32Chapter 3.4.4 --- Interrupts and Exceptions --- p.33Chapter 3.4.5 --- Implementing Forth primitives --- p.34Chapter 3.4.6 --- Code Density Estimation --- p.34Chapter 3.5 --- Summary --- p.35Chapter 4 --- Design Methodology --- p.37Chapter 4.1 --- Basic Notation --- p.38Chapter 4.2 --- Specification of MSL16A --- p.39Chapter 4.3 --- Decomposition into Concurrent Processes --- p.41Chapter 4.4 --- Separation of Control and Datapath --- p.45Chapter 4.5 --- Handshaking Expansion --- p.45Chapter 4.5.1 --- 4-Phase Handshaking Protocol --- p.46Chapter 4.6 --- Production-rule Expansion --- p.47Chapter 4.7 --- Summary --- p.48Chapter 5 --- Implementation --- p.49Chapter 5.1 --- C-element --- p.49Chapter 5.2 --- Mutual Exclusion Elements --- p.51Chapter 5.3 --- Caltech Asynchronous Synthesis Tools --- p.53Chapter 5.4 --- Stack Design --- p.54Chapter 5.4.1 --- Eager Stack Control --- p.55Chapter 5.4.2 --- Lazy Stack Control --- p.56Chapter 5.4.3 --- Eager/Lazy Stack Datapath --- p.53Chapter 5.4.4 --- Pointer Stack Control --- p.61Chapter 5.4.5 --- Pointer Stack Datapath --- p.62Chapter 5.5 --- ALU Design --- p.62Chapter 5.5.1 --- The Addition Operation --- p.63Chapter 5.5.2 --- Zero-Checker --- p.64Chapter 5.6 --- Memory Interface and Tri-state Buffers --- p.64Chapter 5.7 --- MSL16A --- p.65Chapter 5.8 --- Summary --- p.66Chapter 6 --- Results --- p.67Chapter 6.1 --- FPGA based implementation of MSL16 --- p.67Chapter 6.2 --- MSL16A --- p.69Chapter 6.2.1 --- A Comparison of 3 Stack Designs --- p.69Chapter 6.2.2 --- Evaluation of the ALU --- p.73Chapter 6.2.3 --- Evaluation of MSL16A --- p.74Chapter 6.3 --- Summary --- p.81Chapter 7 --- Conclusions --- p.83Chapter 7.1 --- Future Work --- p.85Bibliography --- p.87Publications --- p.9
    • …
    corecore