491 research outputs found

    Role of cavitation in the water relations of irrigated and non-irrigated apple trees

    Get PDF

    Proceedings of the 7th International Conference on Functional-Structural Plant Models, Saariselkä, Finland, 9 - 14 June 2013

    Get PDF

    Handbook of plant and soil analysis for agricultural systems

    Get PDF
    [SPA] Este libro recopila diferentes protocolos para el análisis de plantas y suelos para sistemas agrícolas. Nuestro objetivo es proporcionar un conjunto completo de indicadores para evaluar la productividad de los cultivos, la calidad de los cultivos, la calidad del suelo y la fertilidad del suelo con procedimientos y métodos viables y sólidos. La evaluación de la sostenibilidad de los agroecosistemas requiere la selección de indicadores adecuados y su medida. El presente manual ha compilado diferentes indicadores para evaluar el crecimiento de los cultivos, la incidencia de plagas y enfermedades, el rendimiento de la granja, la calidad de los cultivos y las características nutricionales, los análisis físicos del suelo, los análisis químicos del suelo y los análisis biológicos del suelo. El libro está organizado en tres partes: i) análisis de plantas y cultivos, ii) análisis físico-químicos del suelo y iii) análisis biológicos del suelo. En total, proporcionamos 90 procedimientos para el análisis de plantas y suelos, incluida la importancia y las aplicaciones, el principio del método descrito, los reactivos necesarios, los materiales y equipos, la descripción detallada del procedimiento, los cálculos necesarios y algunas observaciones específicas.[ENG] This books compiles different protocols for analysis of plant and soil for agricultural systems. We aim to provide a complete set of indicators to assess crop productivity, crop quality, soil quality and soil fertility with feasible and robust procedures and methods. The assessment of the sustainability of agroecosystems needs the selection of suitable indicators and their measure. The present handbook has compiled different indicators to assess crop growth, incidence of pests and diseases, farm yield, crop quality and nutritional characteristics, soil physical analyses, soil chemical analyses and soil biological analyses. The book is organized in three parts: i) plant and crop analyses, ii) soil physicochemical analyses and iii) soil biological analyses. In total we provide 90 procedures for plant and soil analysis, including the importance and applications, the principle of the method described, the reagents needed, the materials and equipment, the detailed description of the procedure, the calculations required and some specific remarks.This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 72800

    Remote Sensing of Plant Biodiversity

    Get PDF
    This Open Access volume aims to methodologically improve our understanding of biodiversity by linking disciplines that incorporate remote sensing, and uniting data and perspectives in the fields of biology, landscape ecology, and geography. The book provides a framework for how biodiversity can be detected and evaluated—focusing particularly on plants—using proximal and remotely sensed hyperspectral data and other tools such as LiDAR. The volume, whose chapters bring together a large cross-section of the biodiversity community engaged in these methods, attempts to establish a common language across disciplines for understanding and implementing remote sensing of biodiversity across scales. The first part of the book offers a potential basis for remote detection of biodiversity. An overview of the nature of biodiversity is described, along with ways for determining traits of plant biodiversity through spectral analyses across spatial scales and linking spectral data to the tree of life. The second part details what can be detected spectrally and remotely. Specific instrumentation and technologies are described, as well as the technical challenges of detection and data synthesis, collection and processing. The third part discusses spatial resolution and integration across scales and ends with a vision for developing a global biodiversity monitoring system. Topics include spectral and functional variation across habitats and biomes, biodiversity variables for global scale assessment, and the prospects and pitfalls in remote sensing of biodiversity at the global scale

    Cost-Effective Sensor Systems for Measuring Extracted Chlorophyll-a Concentration

    Get PDF
    Chlorophyll-a concentration is one of the most measured metrics in both water quality and plant health monitoring. It is an indicator of algal biomass and provides insight into stressors such as eutrophication and bloom risk. It is also a widely used metric in terrestrial ecosystems as an indicator of photosynthetic activity and nutrient limitation. Most currently used laboratory-based methods for measuring chlorophyll-a exploit spectroscopic techniques and require expensive instrumentation, like spectrophotometer or fluorometer. In addition, the readings are taken inside a black box to avoid optical noise. The purpose of this thesis is to propose a smart, low-cost, and portable sensor system to measure the concentration of chlorophyll-a in an extracted solution. The goals were achieved using two distinct spectral method. The first approach involves two consumer-grade spectral sensors that read the optical reflectance at 12 discrete wavelengths in visible and near-infrared spectra. The system was tuned for an optimal distance from the sensors to the solution and an enclosure was printed to maintain the distance, as well as to avoid natural light interference. Extracted chlorophyll-a solutions of 52 different concentrations were prepared, and at least 5 readings per sample were taken using the proposed smart sensor system. The ground truth values of the samples were measured in the laboratory using Thermo Nano 2000C. After cleaning the anomalous data, different machine learning models were trained to determine the significant wavelengths that contribute most towards chlorophyll-a measurement. Finally, a decision tree model with 5 important features was chosen based on the lowest Root Mean Square and Mean Absolute Error when it was tested on the validation set. The final model resulted in a mean error of ±0.9 μg/L when applied on the test set. The total cost for the device was around CAD 135. For the next approach, a rapid system has been proposed using electric impedance spectroscopy (EIS) to measure the concentration of chlorophyll-a, extracted into 95%(v/v) ethanol. Two electrodes accompanied with a high precision impedance converter from Analog Device was used for the development of the sensor. The system was tuned for a fixed electrode orientation, effective area, electrode to electrode distance and excitation voltage by studying different relevant experiments. The proposed sensor was calibrated using the impedance of 95%(v/v) ethanol. Extracted chlorophyll solutions of 60 different concentrations were prepared. At least 5 readings per sample were taken using the proposed system from 1.5 kHz to 7.5 kHz. Samples were then analyzed using standard methods by a spectrophotometer (Genesys20) from Thermo Scientific. Study of Pearson coefficient, principal component analysis, variance inflation factor and backward elimination were used to identify the significant features for chlorophyll-a measurement using EIS. Finally, a simple linear regression model with 11 important features in the range 2.3kHz to 4.7kHz was chosen based on the lowest Root Mean Square (RMS) and Mean Absolute (MA) Error. The coefficient of determination, R2 of the fitted model was 0.93. MAE for the final proposed model is ±0.904 μgL-1 when applied on the test set

    Remote Sensing of Plant Biodiversity

    Get PDF
    At last, here it is. For some time now, the world has needed a text providing both a new theoretical foundation and practical guidance on how to approach the challenge of biodiversity decline in the Anthropocene. This is a global challenge demanding global approaches to understand its scope and implications. Until recently, we have simply lacked the tools to do so. We are now entering an era in which we can realistically begin to understand and monitor the multidimensional phenomenon of biodiversity at a planetary scale. This era builds upon three centuries of scientific research on biodiversity at site to landscape levels, augmented over the past two decades by airborne research platforms carrying spectrometers, lidars, and radars for larger-scale observations. Emerging international networks of fine-grain in-situ biodiversity observations complemented by space-based sensors offering coarser-grain imagery—but global coverage—of ecosystem composition, function, and structure together provide the information necessary to monitor and track change in biodiversity globally. This book is a road map on how to observe and interpret terrestrial biodiversity across scales through plants—primary producers and the foundation of the trophic pyramid. It honors the fact that biodiversity exists across different dimensions, including both phylogenetic and functional. Then, it relates these aspects of biodiversity to another dimension, the spectral diversity captured by remote sensing instruments operating at scales from leaf to canopy to biome. The biodiversity community has needed a Rosetta Stone to translate between the language of satellite remote sensing and its resulting spectral diversity and the languages of those exploring the phylogenetic diversity and functional trait diversity of life on Earth. By assembling the vital translation, this volume has globalized our ability to track biodiversity state and change. Thus, a global problem meets a key component of the global solution. The editors have cleverly built the book in three parts. Part 1 addresses the theory behind the remote sensing of terrestrial plant biodiversity: why spectral diversity relates to plant functional traits and phylogenetic diversity. Starting with first principles, it connects plant biochemistry, physiology, and macroecology to remotely sensed spectra and explores the processes behind the patterns we observe. Examples from the field demonstrate the rising synthesis of multiple disciplines to create a new cross-spatial and spectral science of biodiversity. Part 2 discusses how to implement this evolving science. It focuses on the plethora of novel in-situ, airborne, and spaceborne Earth observation tools currently and soon to be available while also incorporating the ways of actually making biodiversity measurements with these tools. It includes instructions for organizing and conducting a field campaign. Throughout, there is a focus on the burgeoning field of imaging spectroscopy, which is revolutionizing our ability to characterize life remotely. Part 3 takes on an overarching issue for any effort to globalize biodiversity observations, the issue of scale. It addresses scale from two perspectives. The first is that of combining observations across varying spatial, temporal, and spectral resolutions for better understanding—that is, what scales and how. This is an area of ongoing research driven by a confluence of innovations in observation systems and rising computational capacity. The second is the organizational side of the scaling challenge. It explores existing frameworks for integrating multi-scale observations within global networks. The focus here is on what practical steps can be taken to organize multi-scale data and what is already happening in this regard. These frameworks include essential biodiversity variables and the Group on Earth Observations Biodiversity Observation Network (GEO BON). This book constitutes an end-to-end guide uniting the latest in research and techniques to cover the theory and practice of the remote sensing of plant biodiversity. In putting it together, the editors and their coauthors, all preeminent in their fields, have done a great service for those seeking to understand and conserve life on Earth—just when we need it most. For if the world is ever to construct a coordinated response to the planetwide crisis of biodiversity loss, it must first assemble adequate—and global—measures of what we are losing

    NASA thesaurus. Volume 3: Definitions

    Get PDF
    Publication of NASA Thesaurus definitions began with Supplement 1 to the 1985 NASA Thesaurus. The definitions given here represent the complete file of over 3,200 definitions, complimented by nearly 1,000 use references. Definitions of more common or general scientific terms are given a NASA slant if one exists. Certain terms are not defined as a matter of policy: common names, chemical elements, specific models of computers, and nontechnical terms. The NASA Thesaurus predates by a number of years the systematic effort to define terms, therefore not all Thesaurus terms have been defined. Nevertheless, definitions of older terms are continually being added. The following data are provided for each entry: term in uppercase/lowercase form, definition, source, and year the term (not the definition) was added to the NASA Thesaurus. The NASA History Office is the authority for capitalization in satellite and spacecraft names. Definitions with no source given were constructed by lexicographers at the NASA Scientific and Technical Information (STI) Facility who rely on the following sources for their information: experts in the field, literature searches from the NASA STI database, and specialized references

    Sensors Application in Agriculture

    Get PDF
    Novel technologies are playing an important role in the development of crop and livestock farming and have the potential to be the key drivers of sustainable intensification of agricultural systems. In particular, new sensors are now available with reduced dimensions, reduced costs, and increased performances, which can be implemented and integrated in production systems, providing more data and eventually an increase in information. It is of great importance to support the digital transformation, precision agriculture, and smart farming, and to eventually allow a revolution in the way food is produced. In order to exploit these results, authoritative studies from the research world are still needed to support the development and implementation of new solutions and best practices. This Special Issue is aimed at bringing together recent developments related to novel sensors and their proved or potential applications in agriculture
    corecore