5,408 research outputs found

    The Dynamics of Internet Traffic: Self-Similarity, Self-Organization, and Complex Phenomena

    Full text link
    The Internet is the most complex system ever created in human history. Therefore, its dynamics and traffic unsurprisingly take on a rich variety of complex dynamics, self-organization, and other phenomena that have been researched for years. This paper is a review of the complex dynamics of Internet traffic. Departing from normal treatises, we will take a view from both the network engineering and physics perspectives showing the strengths and weaknesses as well as insights of both. In addition, many less covered phenomena such as traffic oscillations, large-scale effects of worm traffic, and comparisons of the Internet and biological models will be covered.Comment: 63 pages, 7 figures, 7 tables, submitted to Advances in Complex System

    Container trade and demand for the west coast of Africa: determining the competition and collaboration between six major ports in the region

    Get PDF

    Unlocking the landlocked : appraising the economic viability of dry ports for Zimbabwe

    Get PDF

    Fully automated urban traffic system

    Get PDF
    The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible

    Radial Velocity Prospects Current and Future: A White Paper Report prepared by the Study Analysis Group 8 for the Exoplanet Program Analysis Group (ExoPAG)

    Full text link
    [Abridged] The Study Analysis Group 8 of the NASA Exoplanet Analysis Group was convened to assess the current capabilities and the future potential of the precise radial velocity (PRV) method to advance the NASA goal to "search for planetary bodies and Earth-like planets in orbit around other stars.: (U.S. National Space Policy, June 28, 2010). PRVs complement other exoplanet detection methods, for example offering a direct path to obtaining the bulk density and thus the structure and composition of transiting exoplanets. Our analysis builds upon previous community input, including the ExoPlanet Community Report chapter on radial velocities in 2008, the 2010 Decadal Survey of Astronomy, the Penn State Precise Radial Velocities Workshop response to the Decadal Survey in 2010, and the NSF Portfolio Review in 2012. The radial-velocity detection of exoplanets is strongly endorsed by both the Astro 2010 Decadal Survey "New Worlds, New Horizons" and the NSF Portfolio Review, and the community has recommended robust investment in PRVs. The demands on telescope time for the above mission support, especially for systems of small planets, will exceed the number of nights available using instruments now in operation by a factor of at least several for TESS alone. Pushing down towards true Earth twins will require more photons (i.e. larger telescopes), more stable spectrographs than are currently available, better calibration, and better correction for stellar jitter. We outline four hypothetical situations for PRV work necessary to meet NASA mission exoplanet science objectives.Comment: ExoPAG SAG 8 final report, 112 pages, fixed author name onl

    The Proceedings of 14th Australian Information Security Management Conference, 5-6 December 2016, Edith Cowan University, Perth, Australia

    Get PDF
    The annual Security Congress, run by the Security Research Institute at Edith Cowan University, includes the Australian Information Security and Management Conference. Now in its fourteenth year, the conference remains popular for its diverse content and mixture of technical research and discussion papers. The area of information security and management continues to be varied, as is reflected by the wide variety of subject matter covered by the papers this year. The conference has drawn interest and papers from within Australia and internationally. All submitted papers were subject to a double blind peer review process. Fifteen papers were submitted from Australia and overseas, of which ten were accepted for final presentation and publication. We wish to thank the reviewers for kindly volunteering their time and expertise in support of this event. We would also like to thank the conference committee who have organised yet another successful congress. Events such as this are impossible without the tireless efforts of such people in reviewing and editing the conference papers, and assisting with the planning, organisation and execution of the conferences. To our sponsors also a vote of thanks for both the financial and moral support provided to the conference. Finally, thank you to the administrative and technical staff, and students of the ECU Security Research Institute for their contributions to the running of the conference

    An Assessment of Public Transport Security and Safety: An Examination of Lagos Bus Rapid Transit (BRT), Nigeria

    Get PDF
    This paper aims to assess the security and safety of public transport in the context of Bus Rapid Transit (BRT) in Lagos Nigeria. This study takes into cognizance the BRT routes with the operational facilities cum public perception of the public transport security and safety. The study entails exposition of risks and challenges of public transport as part of literature.  It examines the risks and challenges in public transport as it relates to passengers experience in respect with the state of BRT in the study area. The focus of this study is the examination of Lagos BRT, the study of the Mile 12 – Tafawa Balewa Square (TBS) corridor. A total number of 153 respondents participated in the survey. From the survey, over 110 responsdents which is more than 70 per cent has not been victim or witness the various incidents either in BRT bus. A Correlation Analysis test is used to test the relationship in the Use of BRT for trip made and other choices. The P value is 0.523, which is greater than 0.005 (P> 0.05) and the decision is to accept Ho. Also, the test result shown that there is positive linear relationship between distance from the BRT bus stops from offices/homes and threat in BRT bus stops as the P value is 0.629, this is greater 0.05 (P>0.05). However, after observing the p value(s) for ‘Occurence’ between the rate of being attacked and being threatened, it is clear that the two groups do not differ (p>0.05).  P value gives conclusive evidence that there is no difference in rate of being attacked and being threatened. Based on this study, there is need to address the risks and challenges identified, this would pen-ultimately posit Lagos BRT to overcome some of these forces that are undermining its safety and security challenges.  The recommendation on the real time devices must be adopted and implemented, this would redefine the entire Lagos BRT as a means of public transport. Key words: Public Transport, Security, Safety, Lagos BR

    Cognitive radio-enabled Internet of Vehicles (IoVs): a cooperative spectrum sensing and allocation for vehicular communication

    Get PDF
    Internet of Things (IoTs) era is expected to empower all aspects of Intelligent Transportation System (ITS) to improve transport safety and reduce road accidents. US Federal Communication Commission (FCC) officially allocated 75MHz spectrum in the 5.9GHz band to support vehicular communication which many studies have found insufficient. In this paper, we studied the application of Cognitive Radio (CR) technology to IoVs in order to increase the spectrum resource opportunities available for vehicular communication, especially when the officially allocated 75MHz spectrum in 5.9GHz band is not enough due to high demands as a result of increasing number of connected vehicles as already foreseen in the near era of IoTs. We proposed a novel CR Assisted Vehicular NETwork (CRAVNET) framework which empowers CR enabled vehicles to make opportunistic usage of licensed spectrum bands on the highways. We also developed a novel co-operative three-state spectrum sensing and allocation model which makes CR vehicular secondary units (SUs) aware of additional spectrum resources opportunities on their current and future positions and applies optimal sensing node allocation algorithm to guarantee timely acquisition of the available channels within a limited sensing time. The results of the theoretical analyses and simulation experiments have demonstrated that the proposed model can significantly improve the performance of a cooperative spectrum sensing and provide vehicles with additional spectrum opportunities without harmful interference against the Primary Users (PUs) activities
    • …
    corecore