232 research outputs found

    TempEE: Temporal-Spatial Parallel Transformer for Radar Echo Extrapolation Beyond Auto-Regression

    Full text link
    Meteorological radar reflectivity data (i.e. radar echo) significantly influences precipitation prediction. It can facilitate accurate and expeditious forecasting of short-term heavy rainfall bypassing the need for complex Numerical Weather Prediction (NWP) models. In comparison to conventional models, Deep Learning (DL)-based radar echo extrapolation algorithms exhibit higher effectiveness and efficiency. Nevertheless, the development of reliable and generalized echo extrapolation algorithm is impeded by three primary challenges: cumulative error spreading, imprecise representation of sparsely distributed echoes, and inaccurate description of non-stationary motion processes. To tackle these challenges, this paper proposes a novel radar echo extrapolation algorithm called Temporal-Spatial Parallel Transformer, referred to as TempEE. TempEE avoids using auto-regression and instead employs a one-step forward strategy to prevent cumulative error spreading during the extrapolation process. Additionally, we propose the incorporation of a Multi-level Temporal-Spatial Attention mechanism to improve the algorithm's capability of capturing both global and local information while emphasizing task-related regions, including sparse echo representations, in an efficient manner. Furthermore, the algorithm extracts spatio-temporal representations from continuous echo images using a parallel encoder to model the non-stationary motion process for echo extrapolation. The superiority of our TempEE has been demonstrated in the context of the classic radar echo extrapolation task, utilizing a real-world dataset. Extensive experiments have further validated the efficacy and indispensability of various components within TempEE.Comment: Have been accepted by IEEE Transactions on Geoscience and Remote Sensing, see https://ieeexplore.ieee.org/document/1023874

    Ground Weather RADAR Signal Characterization through Application of Convolutional Neural Networks

    Get PDF
    The 45th Weather Squadron supports the space launch efforts out of the Kennedy Space Center and Cape Canaveral Air Force Station for the Department of Defense, NASA, and commercial customers through weather assessments. Their assessment of the Lightning Launch Commit Criteria (LLCC) for avoidance of natural and rocket triggered lightning to launch vehicles is critical in approving space shuttle and rocket launches. The LLCC includes standards for cloud formations, which requires proper cloud identification and characterization methods. Accurate reflectivity measurements for ground weather radar are important to meet the LLCC for rocket triggered lightning. Current linear interpolation methods for ground weather radar gaps result in over-smoothing of the vertical gradient and over-estimate the risk of rocket triggered lightning, potentially resulting in costly, unnecessarily delayed launches. This research explores the application of existing interpolation methods using convolutional neural networks to perform two-dimensional image interpolation, called inpainting, into the three-dimensional weather radar scan domain. Results demonstrate that convolutional neural networks can improve the accuracy of cloud characterization over current interpolation methods, potentially resulting in fewer launch delays with substantial associated cost savings due to increased capability to meet the LLCC

    Precipitation Nowcasting with Orographic Enhanced Stacked Generalization: Improving Deep Learning Predictions on Extreme Events

    Get PDF
    One of the most crucial applications of radar-based precipitation nowcasting systems is the short-term forecast of extreme rainfall events such as flash floods and severe thunderstorms. While deep learning nowcasting models have recently shown to provide better overall skill than traditional echo extrapolation models, they suffer from conditional bias, sometimes reporting lower skill on extreme rain rates compared to Lagrangian persistence, due to excessive prediction smoothing. This work presents a novel method to improve deep learning prediction skills in particular for extreme rainfall regimes. The solution is based on model stacking, where a convolutional neural network is trained to combine an ensemble of deep learning models with orographic features, doubling the prediction skills with respect to the ensemble members and their average on extreme rain rates, and outperforming them on all rain regimes. The proposed architecture was applied on the recently released TAASRAD19 radar dataset: the initial ensemble was built by training four models with the same TrajGRU architecture over different rainfall thresholds on the first six years of the dataset, while the following three years of data were used for the stacked model. The stacked model can reach the same skill of Lagrangian persistence on extreme rain rates while retaining superior performance on lower rain regimes
    • …
    corecore