2,490 research outputs found

    Classification of EMI discharge sources using time–frequency features and multi-class support vector machine

    Get PDF
    This paper introduces the first application of feature extraction and machine learning to Electromagnetic Interference (EMI) signals for discharge sources classification in high voltage power generating plants. This work presents an investigation on signals that represent different discharge sources, which are measured using EMI techniques from operating electrical machines within power plant. The analysis involves Time-Frequency image calculation of EMI signals using General Linear Chirplet Analysis (GLCT) which reveals both time and frequency varying characteristics. Histograms of uniform Local Binary Patterns (LBP) are implemented as a feature reduction and extraction technique for the classification of discharge sources using Multi-Class Support Vector Machine (MCSVM). The novelty that this paper introduces is the combination of GLCT and LBP applications to develop a new feature extraction algorithm applied to EMI signals classification. The proposed algorithm is demonstrated to be successful with excellent classification accuracy being achieved. For the first time, this work transfers expert's knowledge on EMI faults to an intelligent system which could potentially be exploited to develop an automatic condition monitoring system

    A Robust Algorithm to Detect Multiple Centrifugal Pump Faults with Corrupted Vibration and Current Signatures Using Continuous Wavelet Transform

    Get PDF
    LectureCentrifugal pumps are susceptible to seizures owing to reasons such as, fluid flow abnormalities and/or mechanical component failures. Consequently, it is crucial to recognize these faults and estimate their severity. The present work shows the development of a robust algorithm based on support vector machines (SVM) to classify multiple CP faults, such as suction and discharge blockages (with varying severities), impeller defects, pitted cover plate faults and dry runs using continuous wavelet transform (CWT) analysis. For the sake of classification, the CP vibration data and motor line-current data are generated for each of these faults experimentally. Furthermore, in an industrial setting, CP signatures are susceptible to noise corruption due to other operating equipment in the premises. Hence, to assess the versatility of the developed methodology, the generated experimental data is further corrupted with 5%, 10% and 25% additive white Gaussian noise and used to test the algorithm

    Hybrid Discrete Wavelet Transform and Gabor Filter Banks Processing for Features Extraction from Biomedical Images

    Get PDF
    A new methodology for automatic feature extraction from biomedical images and subsequent classification is presented. The approach exploits the spatial orientation of high-frequency textural features of the processed image as determined by a two-step process. First, the two-dimensional discrete wavelet transform(DWT) is applied to obtain the HH high-frequency subband image. Then, a Gabor filter bank is applied to the latter at different frequencies and spatial orientations to obtain new Gabor-filtered image whose entropy and uniformity are computed. Finally, the obtained statistics are fed to a support vector machine (SVM) binary classifier. The approach was validated on mammograms, retina, and brain magnetic resonance (MR) images.The obtained classification accuracies show better performance in comparison to common approaches that use only the DWT or Gabor filter banks for feature extraction

    Multiple bottlenecks sorting criterion at initial sequence in solving permutation flow shop scheduling problem

    Get PDF
    This paper proposes a heuristic that introduces the application of bottleneck-based concept at the beginning of an initial sequence determination with the objective of makespan minimization. Earlier studies found that the scheduling activity become complicated when dealing with machine, m greater than 2, known as non-deterministic polynomial-time hardness (NP-hard). To date, the Nawaz-Enscore-Ham (NEH) algorithm is still recognized as the best heuristic in solving makespan problem in scheduling environment. Thus, this study treated the NEH heuristic as the highest ranking and most suitable heuristic for evaluation purpose since it is the best performing heuristic in makespan minimization. This study used the bottleneck-based approach to identify the critical processing machine which led to high completion time. In this study, an experiment involving machines (m =4) and n-job (n = 6, 10, 15, 20) was simulated in Microsoft Excel Simple Programming to solve the permutation flowshop scheduling problem. The overall computational results demonstrated that the bottleneck machine M4 performed the best in minimizing the makespan for all data set of problems

    Wavelet Based Diagnosis and Protection of Electric Motors

    Get PDF

    Recognition and classification of power quality disturbances by DWT-MRA and SVM classifier

    Get PDF
    Electrical power system is a large and complex network, where power quality disturbances (PQDs) must be monitored, analyzed and mitigated continuously in order to preserve and to re-establish the normal power supply without even slight interruption. Practically huge disturbance data is difficult to manage and requires the higher level of accuracy and time for the analysis and monitoring. Thus automatic and intelligent algorithm based methodologies are in practice for the detection, recognition and classification of power quality events. This approach may help to take preventive measures against abnormal operations and moreover, sudden fluctuations in supply can be handled accordingly. Disturbance types, causes, proper and appropriate extraction of features in single and multiple disturbances, classification model type and classifier performance, are still the main concerns and challenges. In this paper, an attempt has been made to present a different approach for recognition of PQDs with the synthetic model based generated disturbances, which are frequent in power system operations, and the proposed unique feature vector. Disturbances are generated in Matlab workspace environment whereas distinctive features of events are extracted through discrete wavelet transform (DWT) technique. Machine learning based Support vector machine classifier tool is implemented for the classification and recognition of disturbances. In relation to the results, the proposed methodology recognizes the PQDs with high accuracy, sensitivity and specificity. This study illustrates that the proposed approach is valid, efficient and applicable
    • …
    corecore