322 research outputs found

    Soft error rate estimation in deep sub-micron CMOS

    Get PDF
    Soft errors resulting from the impact of charged particles are emerging as a major issue in the design of reliable circuits at deep sub-micron dimensions. In this paper, we model the sensitivity of individual circuit classes to single event upsets using predictive technology models over a range of CMOS device sizes from 90 nm down to 32 nm. Modeling the relative position of particle strikes as injected current pulses of varying amplitude and fall time, we find that the critical charge for each technology is an almost linear function both of the fall time of the injected current and the supply voltage. This simple relationship will simplify the task of estimating circuit-level soft error rate (SER) and support the development of an efficient SER modeling and optimization tool that might eventually be integrated into a high level language design flow

    Reliability-energy-performance optimisation in combinational circuits in presence of soft errors

    Get PDF
    PhD ThesisThe reliability metric has a direct relationship to the amount of value produced by a circuit, similar to the performance metric. With advances in CMOS technology, digital circuits become increasingly more susceptible to soft errors. Therefore, it is imperative to be able to assess and improve the level of reliability of these circuits. A framework for evaluating and improving the reliability of combinational circuits is proposed, and an interplay between the metrics of reliability, energy and performance is explored. Reliability evaluation is divided into two levels of characterisation: stochastic fault model (SFM) of the component library and a design-specific critical vector model (CVM). The SFM captures the properties of components with regard to the interference which causes error. The CVM is derived from a limited number of simulation runs on the specific design at the design time and producing the reliability metric. The idea is to move the high-complexity problem of the stochastic characterisation of components to the generic part of the design process, and to do it just once for a large number of specific designs. The method is demonstrated on a range of circuits with various structures. A three-way trade-off between reliability, energy, and performance has been discovered; this trade-off facilitates optimisations of circuits and their operating conditions. A technique for improving the reliability of a circuit is proposed, based on adding a slow stage at the primary output. Slow stages have the ability to absorb narrow glitches from prior stages, thus reducing the error probability. Such stages, or filters, suppress most of the glitches generated in prior stages and prevent them from arriving at the primary output of the circuit. Two filter solutions have been developed and analysed. The results show a dramatic improvement in reliability at the expense of minor performance and energy penalties. To alleviate the problem of the time-consuming analogue simulations involved in the proposed method, a simplification technique is proposed. This technique exploits the equivalence between the properties of the gates within a path and the equivalence between paths. On the basis of these equivalences, it is possible to reduce the number of simulation runs. The effectiveness of the proposed technique is evaluated by applying it to different circuits with a representative variety of path topologies. The results show a significant decrease in the time taken to estimate reliability at the expense of a minor decrease in the accuracy of estimation. The simplification technique enables the use of the proposed method in applications with complex circuits.Ministry of Education and Scientific Research in Liby

    Identification and Rejuvenation of NBTI-Critical Logic Paths in Nanoscale Circuits

    Get PDF
    The Negative Bias Temperature Instability (NBTI) phenomenon is agreed to be one of the main reliability concerns in nanoscale circuits. It increases the threshold voltage of pMOS transistors, thus, slows down signal propagation along logic paths between flip-flops. NBTI may cause intermittent faults and, ultimately, the circuit’s permanent functional failures. In this paper, we propose an innovative NBTI mitigation approach by rejuvenating the nanoscale logic along NBTI-critical paths. The method is based on hierarchical identification of NBTI-critical paths and the generation of rejuvenation stimuli using an Evolutionary Algorithm. A new, fast, yet accurate model for computation of NBTI-induced delays at gate-level is developed. This model is based on intensive SPICE simulations of individual gates. The generated rejuvenation stimuli are used to drive those pMOS transistors to the recovery phase, which are the most critical for the NBTI-induced path delay. It is intended to apply the rejuvenation procedure to the circuit, as an execution overhead, periodically. Experimental results performed on a set of designs demonstrate reduction of NBTI-induced delays by up to two times with an execution overhead of 0.1 % or less. The proposed approach is aimed at extending the reliable lifetime of nanoelectronics

    Analysis and Design of Resilient VLSI Circuits

    Get PDF
    The reliable operation of Integrated Circuits (ICs) has become increasingly difficult to achieve in the deep sub-micron (DSM) era. With continuously decreasing device feature sizes, combined with lower supply voltages and higher operating frequencies, the noise immunity of VLSI circuits is decreasing alarmingly. Thus, VLSI circuits are becoming more vulnerable to noise effects such as crosstalk, power supply variations and radiation-induced soft errors. Among these noise sources, soft errors (or error caused by radiation particle strikes) have become an increasingly troublesome issue for memory arrays as well as combinational logic circuits. Also, in the DSM era, process variations are increasing at an alarming rate, making it more difficult to design reliable VLSI circuits. Hence, it is important to efficiently design robust VLSI circuits that are resilient to radiation particle strikes and process variations. The work presented in this dissertation presents several analysis and design techniques with the goal of realizing VLSI circuits which are tolerant to radiation particle strikes and process variations. This dissertation consists of two parts. The first part proposes four analysis and two design approaches to address radiation particle strikes. The analysis techniques for the radiation particle strikes include: an approach to analytically determine the pulse width and the pulse shape of a radiation induced voltage glitch in combinational circuits, a technique to model the dynamic stability of SRAMs, and a 3D device-level analysis of the radiation tolerance of voltage scaled circuits. Experimental results demonstrate that the proposed techniques for analyzing radiation particle strikes in combinational circuits and SRAMs are fast and accurate compared to SPICE. Therefore, these analysis approaches can be easily integrated in a VLSI design flow to analyze the radiation tolerance of such circuits, and harden them early in the design flow. From 3D device-level analysis of the radiation tolerance of voltage scaled circuits, several non-intuitive observations are made and correspondingly, a set of guidelines are proposed, which are important to consider to realize radiation hardened circuits. Two circuit level hardening approaches are also presented to harden combinational circuits against a radiation particle strike. These hardening approaches significantly improve the tolerance of combinational circuits against low and very high energy radiation particle strikes respectively, with modest area and delay overheads. The second part of this dissertation addresses process variations. A technique is developed to perform sensitizable statistical timing analysis of a circuit, and thereby improve the accuracy of timing analysis under process variations. Experimental results demonstrate that this technique is able to significantly reduce the pessimism due to two sources of inaccuracy which plague current statistical static timing analysis (SSTA) tools. Two design approaches are also proposed to improve the process variation tolerance of combinational circuits and voltage level shifters (which are used in circuits with multiple interacting power supply domains), respectively. The variation tolerant design approach for combinational circuits significantly improves the resilience of these circuits to random process variations, with a reduction in the worst case delay and low area penalty. The proposed voltage level shifter is faster, requires lower dynamic power and area, has lower leakage currents, and is more tolerant to process variations, compared to the best known previous approach. In summary, this dissertation presents several analysis and design techniques which significantly augment the existing work in the area of resilient VLSI circuit design

    Degradation in FPGAs: Monitoring, Modeling and Mitigation

    Get PDF
    This dissertation targets the transistor aging degradation as well as the associated thermal challenges in FPGAs (since there is an exponential relation between aging and chip temperature). The main objectives are to perform experimentation, analysis and device-level model abstraction for modeling the degradation in FPGAs, then to monitor the FPGA to keep track of aging rates and ultimately to propose an aging-aware FPGA design flow to mitigate the aging

    Skybridge: 3-D Integrated Circuit Technology Alternative to CMOS

    Full text link
    Continuous scaling of CMOS has been the major catalyst in miniaturization of integrated circuits (ICs) and crucial for global socio-economic progress. However, scaling to sub-20nm technologies is proving to be challenging as MOSFETs are reaching their fundamental limits and interconnection bottleneck is dominating IC operational power and performance. Migrating to 3-D, as a way to advance scaling, has eluded us due to inherent customization and manufacturing requirements in CMOS that are incompatible with 3-D organization. Partial attempts with die-die and layer-layer stacking have their own limitations. We propose a 3-D IC fabric technology, Skybridge[TM], which offers paradigm shift in technology scaling as well as design. We co-architect Skybridge's core aspects, from device to circuit style, connectivity, thermal management, and manufacturing pathway in a 3-D fabric-centric manner, building on a uniform 3-D template. Our extensive bottom-up simulations, accounting for detailed material system structures, manufacturing process, device, and circuit parasitics, carried through for several designs including a designed microprocessor, reveal a 30-60x density, 3.5x performance per watt benefits, and 10X reduction in interconnect lengths vs. scaled 16-nm CMOS. Fabric-level heat extraction features are shown to successfully manage IC thermal profiles in 3-D. Skybridge can provide continuous scaling of integrated circuits beyond CMOS in the 21st century.Comment: 53 Page

    The Logic of Random Pulses: Stochastic Computing.

    Full text link
    Recent developments in the field of electronics have produced nano-scale devices whose operation can only be described in probabilistic terms. In contrast with the conventional deterministic computing that has dominated the digital world for decades, we investigate a fundamentally different technique that is probabilistic by nature, namely, stochastic computing (SC). In SC, numbers are represented by bit-streams of 0's and 1's, in which the probability of seeing a 1 denotes the value of the number. The main benefit of SC is that complicated arithmetic computation can be performed by simple logic circuits. For example, a single (logic) AND gate performs multiplication. The dissertation begins with a comprehensive survey of SC and its applications. We highlight its main challenges, which include long computation time and low accuracy, as well as the lack of general design methods. We then address some of the more important challenges. We introduce a new SC design method, called STRAUSS, that generates efficient SC circuits for arbitrary target functions. We then address the problems arising from correlation among stochastic numbers (SNs). In particular, we show that, contrary to general belief, correlation can sometimes serve as a resource in SC design. We also show that unlike conventional circuits, SC circuits can tolerate high error rates and are hence useful in some new applications that involve nondeterministic behavior in the underlying circuitry. Finally, we show how SC's properties can be exploited in the design of an efficient vision chip that is suitable for retinal implants. In particular, we show that SC circuits can directly operate on signals with neural encoding, which eliminates the need for data conversion.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113561/1/alaghi_1.pd

    Methods and architectures based on modular redundancy for fault-tolerant combinational circuits

    Get PDF
    Dans cette thèse, nous nous intéressons à la recherche d architectures fiables pour les circuits logiques. Par fiable , nous entendons des architectures permettant le masquage des fautes et les rendant de ce fait tolérantes" à ces fautes. Les solutions pour la tolérance aux fautes sont basées sur la redondance, d où le surcoût qui y est associé. La redondance peut être mise en oeuvre de différentes manières : statique ou dynamique, spatiale ou temporelle. Nous menons cette recherche en essayant de minimiser tant que possible le surcoût matériel engendré par le mécanisme de tolérance aux fautes. Le travail porte principalement sur les solutions de redondance modulaire, mais certaines études développées sont beaucoup plus générales.In this thesis, we mainly take into account the representative technique Triple Module Redundancy (TMR) as the reliability improvement technique. A voter is an necessary element in this kind of fault-tolerant architectures. The importance of reliability in majority voter is due to its application in both conventional fault-tolerant design and novel nanoelectronic systems. The property of a voter is therefore a bottleneck since it directly determines the whole performance of a redundant fault-tolerant digital IP (such as a TMR configuration). Obviously, the efficacy of TMR is to increase the reliability of digital IP. However, TMR sometimes could result in worse reliability than a simplex function module could. A better understanding of functional and signal reliability characteristics of a 3-input majority voter (majority voting in TMR) is studied. We analyze them by utilizing signal probability and boolean difference. It is well known that the acquisition of output signal probabilities is much easier compared with the obtention of output reliability. The results derived in this thesis proclaim the signal probability requirements for inputs of majority voter, and thereby reveal the conditions that TMR technique requires. This study shows the critical importance of error characteristics of majority voter, as used in fault-tolerant designs. As the flawlessness of majority voter in TMR is not true, we also proposed a fault-tolerant and simple 2-level majority voter structure for TMR. This alternative architecture for majority voter is useful in TMR schemes. The proposed solution is robust to single fault and exceeds those previous ones in terms of reliability.PARIS-Télécom ParisTech (751132302) / SudocSudocFranceF

    Revamping Timing Error Resilience to Tackle Choke Points at NTC

    Get PDF
    The growing market of portable devices and smart wearables has contributed to innovation and development of systems with longer battery-life. While Near Threshold Computing (NTC) systems address the need for longer battery-life, they have certain limitations. NTC systems are prone to be significantly affected by variations in the fabrication process, commonly called process variation (PV). This dissertation explores an intriguing effect of PV, called choke points. Choke points are especially important due to their multifarious influence on the functional correctness of an NTC system. This work shows why novel research is required in this direction and proposes two techniques to resolve the problems created by choke points, while maintaining the reduced power needs
    • …
    corecore