2,889 research outputs found

    Three-Level Converters for Low Voltage Active Front End Motor Drives

    Get PDF
    Electric drives with Active Front End (AFE) converters can provide benefits such as lower harmonic current injections to the grid, smaller size filters, lower THD values and cost saving for injection of power to the grid in brake situations. SiC-MOSFET based two-level converters can be a promising topology for Active Front End (AFE) application in electric drives. The possibility of high switching frequency will make the grid filters smaller. Grid filters are used for EMC and power quality issues. However, there are practical limitations for increasing the switching frequency such as dead time in the gating signals, sampling requirements, and electro-magnetic interference (EMI) considerations, besides the need for high frequency magnetic material for the LCL line filter. However, three-level converters provide the opportunity to switch at a lower frequency and also reduce the filter size compared to a two-level IGBT converter. Three-level converters can be built using low voltage rated modules with lower switching losses and reduced cost compared to SiC based two-level converters. In this work, a comparison between three-level converters and two-level converters is presented focusing on power loss, filter size and application benefits. This comparison is based on an optimization algorithm with the objective function of weight, volume and cost. The topologies and modulation techniques for multilevel converter are categorized at first by a thorough literature survey. The pros and cons for various multilevel topologies and modulation techniques are discussed. The 3-level neutral point clamped (NPC) topology is selected to build a 25 hp, 480V power conversion system. LCL filter design for comparability with grid requirements has been done and the optimal size of the LCL filter is derived considering thermal limitations.\par To make the comparison between different topologies and switch types possible, it is necessary to consider the maximum junction temperature relation to the switching frequency. In this work, a new modulation method is proposed to improve the performance of three-level converters considering losses and thermal performance. Also, a thermal model is derived for SiC MOSFET power modules that takes the effect of MOSFET channel conduction into consideration. Losses for different modulation methods is analysed and compared for two-level and three-level converters. For a specific application of drives, low speed operation is investigated and the comparison between three-level and two-level converters is considered. The methods for calculating losses are considered carefully to ensure maximizing the utilization of the power semiconductors (for highest power density designs). A novel modulation method is developed for low speed operation of power converters. Finally, an optimization is done for finding minimum volume, highest efficiency, minimum common mode pulses and complying with EMI constraints. This optimization has been broken into multiple steps for reducing the problem size. This will enable us to validate the results more efficiently. Some parts of this optimization are done automatically such as the inductor magnetic and thermal design

    Solid state transformer technologies and applications: a bibliographical survey

    Get PDF
    This paper presents a bibliographical survey of the work carried out to date on the solid state transformer (SST). The paper provides a list of references that cover most work related to this device and a short discussion about several aspects. The sections of the paper are respectively dedicated to summarize configurations and control strategies for each SST stage, the work carried out for optimizing the design of high-frequency transformers that could adequately work in the isolation stage of a SST, the efficiency of this device, the various modelling approaches and simulation tools used to analyze the performance of a SST (working a component of a microgrid, a distribution system or just in a standalone scenario), and the potential applications that this device is offering as a component of a power grid, a smart house, or a traction system.Peer ReviewedPostprint (published version

    Power Interface Design and System Stability Analysis for 400 V DC-Powered Data Centers

    Get PDF
    The demands of high performance cloud computation and internet services have increased in recent decades. These demands have driven the expansion of existing data centers and the construction of new data centers. The high costs of data center downtime are pushing designers to provide high reliability power supplies. Thus, there are significant research questions and challenges to design efficient and environmentally friendly data centers with address increasing energy prices and distributed energy developments. This dissertation work aims to study and investigate the suitable technologies of power interface and system level configuration for high efficiency and reliable data centers. A 400 V DC-powered data center integrated with solar power and hybrid energy storage is proposed to reduce the power loss and cable cost in data centers. A cascaded totem-pole bridgeless PFC converter to convert grid ac voltage to the 400 V dc voltage is proposed in this work. Three main control strategies are developed for the power converters. First, a model predictive control is developed for the cascaded totem-pole bridgeless PFC converter. This control provides stable transient performance and high power efficiency. Second, a power loss model based dual-phase-shift control is applied for the efficiency improvement of dual-active bridge converter. Third, an optimized maximum power point tracking (MPPT) control for solar power and a hybrid energy storage unit (HESU) control are given in this research work. The HESU consists of battery and ultracapacitor packs. The ultracapacitor can improve the battery lifetime and reduce any transients affecting grid side operation. The large signal model of a typical solar power integrated datacenter is built to analyze the system stability with various conditions. The MATLAB/Simulink™-based simulations are used to identify the stable region of the data center power supply. This can help to analyze the sensitivity of the circuit parameters, which include the cable inductance, resistance, and dc bus capacitance. This work analyzes the system dynamic response under different operating conditions to determine the stability of the dc bus voltage. The system stability under different percentages of solar power and hybrid energy storage integrated in the data center are also investigated

    High Power, Medium Frequency, and Medium Voltage Transformer Design and Implementation

    Get PDF
    Many industrial applications that require high-power and high-voltage DC-DC conversion are emerging. Space-borne and off-shore wind farms, fleet fast electric vehicle charging stations, large data centers, and smart distribution systems are among the applications. Solid State Transformer (SST) is a promising concept for addressing these emerging applications. It replaces the traditional Low Frequency Transformer (LFT) while offering many advanced features such as VAR compensation, voltage regulation, fault isolation, and DC connectivity. Many technical challenges related to high voltage stress, efficiency, reliability, protection, and insulation must be addressed before the technology is ready for commercial deployment. Among the major challenges in the construction of SSTs are the strategies for connecting to Medium Voltage (MV) level. This issue has primarily been addressed by synthesizing multicellular SST concepts based on modules rated for a fraction of the total MV side voltage and connecting these modules in series at the input side. Silicon Carbide (SiC) semiconductor development enables the fabrication of power semiconductor devices with high blocking voltage capabilities while achieving superior switching and conduction performances. When compared to modular lower voltage converters, these higher voltage semiconductors enable the construction of single-cell SSTs by avoiding the series connection of several modules, resulting in simple, reliable, lighter mass, more power dense, higher efficiency, and cost effective converter structures. This dissertation proposes a solution to this major issue. The proposed work focuses on the development of a dual active bridge with high power, medium voltage, and medium frequency control. This architecture addresses the shortcomings of existing modular systems by providing a more power dense, cost-effective, and efficient solution. For the first time, this topology is investigated on a 700kW system connected to a 13kVdc input to generate 7.2kVdc at the output. The use of 10kV SiC modules and gate drivers in an active neutral point clamped to two level dual active bridge converter is investigated. A special emphasis will be placed on a comprehensive transformer design that employs a multi-physics approach that addresses all magnetic, electrical, insulation, and thermal aspects. The transformer is designed and tested to ensure the system’s viability

    Power Interface Design and System Stability Analysis for 400 V DC-Powered Data Centers

    Get PDF
    The demands of high performance cloud computation and internet services have increased in recent decades. These demands have driven the expansion of existing data centers and the construction of new data centers. The high costs of data center downtime are pushing designers to provide high reliability power supplies. Thus, there are significant research questions and challenges to design efficient and environmentally friendly data centers with address increasing energy prices and distributed energy developments. This dissertation work aims to study and investigate the suitable technologies of power interface and system level configuration for high efficiency and reliable data centers. A 400 V DC-powered data center integrated with solar power and hybrid energy storage is proposed to reduce the power loss and cable cost in data centers. A cascaded totem-pole bridgeless PFC converter to convert grid ac voltage to the 400 V dc voltage is proposed in this work. Three main control strategies are developed for the power converters. First, a model predictive control is developed for the cascaded totem-pole bridgeless PFC converter. This control provides stable transient performance and high power efficiency. Second, a power loss model based dual-phase-shift control is applied for the efficiency improvement of dual-active bridge converter. Third, an optimized maximum power point tracking (MPPT) control for solar power and a hybrid energy storage unit (HESU) control are given in this research work. The HESU consists of battery and ultracapacitor packs. The ultracapacitor can improve the battery lifetime and reduce any transients affecting grid side operation. The large signal model of a typical solar power integrated datacenter is built to analyze the system stability with various conditions. The MATLAB/Simulink™-based simulations are used to identify the stable region of the data center power supply. This can help to analyze the sensitivity of the circuit parameters, which include the cable inductance, resistance, and dc bus capacitance. This work analyzes the system dynamic response under different operating conditions to determine the stability of the dc bus voltage. The system stability under different percentages of solar power and hybrid energy storage integrated in the data center are also investigated

    High Power Density and High Efficiency Converter Topologies for Renewable Energy Conversion and EV Applications

    Get PDF
    This dissertation work presents two novel converter topologies (a three-level ANPC inverter utilizing hybrid Si/SiC switches and an Asymmetric Alternate Arm Converter (AAAC) topology) that are suitable for high efficiency and high-power density energy conversion systems. The operation principle, modulation, and control strategy of these newly introduced converter topologies are presented in detail supported by simulation and experimental results. A thorough design optimization of these converter topologies (Si/SiC current rating ratio optimization and gate control strategies for the three-level ANPC inverter topology and component sizing for the asymmetric alternate arm converter topology) are also presented. Performance comparison of the proposed converter topologies with other similar converter topologies is also presented. The performance of the proposed ANPC inverter topology is compared with other ANPC inverter topologies such as an all SiC MOSFET ANPC inverter topology, an all Si IGBT ANPC inverter topology and mixed Si IGBT and SiC MOSFET based ANPC inverter topologies in terms of efficiency and cost. The efficiency and cost comparison results show that the proposed hybrid Si/SiC switch based ANPC inverter has higher efficiency and lower cost compared to the other ANPC inverter topologies considered for the comparison. The performance of the asymmetric alternate arm converter topology is also compared with other similar voltage source converter topologies such as the modular multilevel converter topology, the alternate arm converter topology, and the improved alternate arm converter topology in terms of total device count, number of switches per current conduction path, output voltage levels, dc-fault blocking capability and overmodulation capability. The proposed multilevel converter topology has lower total number of devices and lower number of devices per current conduction path hence it has lower cost and lower conduction power loss. However, it has lower number of output voltage levels (requiring larger ac interface inductors) and lacks dc-fault blocking and overmodulation operation capabilities. A converter figure-of-merit accounting for the hybrid Si/SiC switch and converter topology properties is also proposed to help perform quick performance comparison between different hybrid Si/SiC switch based converter topologies. It eliminates the need for developing full electro-thermal power loss model for different converter topologies that would otherwise be needed to carry out power loss comparison between different converter topologies. Hence it saves time and effort

    High Efficiency Reversible Fuel Cell Power Converter

    Get PDF

    Integrated DC-DC Charger Powertrain Converter Design for Electric Vehicles Using Wide Bandgap Semiconductors

    Get PDF
    Electric vehicles (EVs) adoption is growing due to environmental concerns, government subsidies, and cheaper battery packs. The main power electronics design challenges for next-generation EV power converters are power converter weight, volume, cost, and loss reduction. In conventional EVs, the traction boost and the onboard charger (OBC) have separate power modules, passives, and heat sinks. An integrated converter, combining and re-using some charging and powertrain components together, can reduce converter cost, volume, and weight. However, efficiency is often reduced to obtain the advantage of cost, volume, and weight reduction.An integrated converter topology is proposed to combine the functionality of the traction boost converter and isolated DC-DC converter of the OBC using a hybrid transformer where the same core is used for both converters. The reconfiguration between charging and traction operation is performed by the existing Battery Management System (BMS) contactors. The proposed converter is operated in both boost and dual active bridge (DAB) mode during traction operation. The loss mechanisms of the proposed integrated converter are modeled for different operating modes for design optimization. An aggregated drive cycle is considered for optimizing the integrated converter design parameters to reduce energy loss during traction operation, weight, and cost. By operating the integrated converter in DAB mode at light-load and boost mode at high-speed heavy-load, the traction efficiency is improved. An online mode transition algorithm is also developed to ensure stable output voltage and eliminate current oscillation during the mode transition. A high-power prototype is developed to verify the integrated converter functionality, validate the loss model, and demonstrate the online transition algorithm. An automated closed-loop controller is developed to implement the transition algorithm which can automatically make the transition between modes based on embedded efficiency mapping. The closed-loop control system also regulates the integrated converter output voltage to improve the overall traction efficiency of the integrated converter. Using the targeted design approach, the proposed integrated converter performs better in all three aspects including efficiency, weight, and cost than comparable discrete solutions for each converter

    Design of SiC-Si Hybrid Interleaved 3-Phase 5-Level E-Type Back-to-Back Converter

    Get PDF
    In modern applications, such as variable frequency electric drives, aircraft propulsion, electric vehicles, and uninterruptible power supply units, high power-dense, and efficient AC-AC power converters are the key to reducing power losses, thus limiting the overall costs, and improving the system's reliability. Power electronic equipment can be enhanced thanks to the continuous evolution of conversion topologies and advancements in power semiconductor technology. The design and the optimization strategy of the AC-AC 5-Level converter, called Interleaved 3-Phase 5-Level E-Type Back-to-Back Converter (I3Φ5L BTB E-Type Converter), has been proposed in this paper. The converter is analyzed and experimentally characterized to prove the configuration's high efficiency and high-power density. An introduction to the characteristics of the I-3Φ5L BTB E-Type Converter is described, and afterward, the optimization methodology to design the multilevel converter is presented. The converter prototype is illustrated, which achieves a peak efficiency of 98.2% and a total weight of 6.18 kg using hybrid technology for power semiconductor

    Applications of Power Electronics:Volume 1

    Get PDF
    • …
    corecore