1,766 research outputs found

    Identification of nonlinear time-varying systems using an online sliding-window and common model structure selection (CMSS) approach with applications to EEG

    Get PDF
    The identification of nonlinear time-varying systems using linear-in-the-parameter models is investigated. A new efficient Common Model Structure Selection (CMSS) algorithm is proposed to select a common model structure. The main idea and key procedure is: First, generate K 1 data sets (the first K data sets are used for training, and theK 1 th one is used for testing) using an online sliding window method; then detect significant model terms to form a common model structure which fits over all the K training data sets using the new proposed CMSS approach. Finally, estimate and refine the time-varying parameters for the identified common-structured model using a Recursive Least Squares (RLS) parameter estimation method. The new method can effectively detect and adaptively track the transient variation of nonstationary signals. Two examples are presented to illustrate the effectiveness of the new approach including an application to an EEG data set

    Neural activity inspired asymmetric basis function TV-NARX model for the identification of time-varying dynamic systems

    Get PDF
    Inspired by the unique neuronal activities, a new time-varying nonlinear autoregressive with exogenous input (TV-NARX) model is proposed for modelling nonstationary processes. The NARX nonlinear process mimics the action potential initiation and the time-varying parameters are approximated with a series of postsynaptic current like asymmetric basis functions to mimic the ion channels of the inter-neuron propagation. In the model, the time-varying parameters of the process terms are sparsely represented as the superposition of a series of asymmetric alpha basis functions in an over-complete frame. Combining the alpha basis functions with the model process terms, the system identification of the TV-NARX model from observed input and output can equivalently be treated as the system identification of a corresponding time-invariant system. The locally regularised orthogonal forward regression (LROFR) algorithm is then employed to detect the sparse model structure and estimate the associated coefficients. The excellent performance in both numerical studies and modelling of real physiological signals showed that the TV-NARX model with asymmetric basis function is more powerful and efficient in tracking both smooth trends and capturing the abrupt changes in the time-varying parameters than its symmetric counterparts

    Time-varying Autoregressive Modeling of Nonstationary Signals

    Get PDF
    Nonstationary signal modeling is a research topic of practical interest. In this thesis, we adopt a time-varying (TV) autoregressive (AR) model using the basis function (BF) parameter estimation method for nonstationary process identification and instantaneous frequency (IF) estimation. The current TVAR model in direct form (DF) with the blockwise least-squares and recursive weighted-least-squares BF methods perform equivalently well in signal modeling, but the large estimation error may cause temporary instabilities of the estimated model. To achieve convenient model stability monitoring and pole tracking, the TVAR model in cascade form (CF) was proposed through the parameterization in terms of TV poles (represented by second order section coefficients, Cartesian coordinates, Polar coordinates), where the time variation of each pole parameter is assumed to be the linear combination of BFs. The nonlinear system equations for the TVAR model in CF are solved iteratively using the Gauss-Newton algorithm. Using the CF, the model stability is easily controlled by constraining the estimated TV poles within the unit circle. The CF model shows similar performance trends to the DF model using the recursive BF method, and the TV pole representation in Cartesian coordinates outperforms all other representations. The individual frequency variation can be finely tracked using the CF model, when several frequency components are present in the signal. Simulations were carried on synthetic sinusoidal signals with different frequency variations for IF estimation. For the TVAR model in DF (blockwise), the basis dimension (BD) is an important factor on frequency estimation accuracy. For the TVAR model in DF (recursive) and CF (Cartesian), the influences of BD are negligible. The additive white noise in the observed signal degrades the estimation performance, and the the noise effects can be reduce by using higher model order. Experiments were carried on the real electromyography (EMG) data for frequency estimation in the analysis of muscle fatigue. The TVAR modeling methods show equivalent performance to the conventional Fourier transform method

    A parametric time frequency-conditional Granger causality method using ultra-regularized orthogonal least squares and multiwavelets for dynamic connectivity analysis in EEGs

    Get PDF
    Objective: This study proposes a new para-metric TF-CGC (time-frequency conditional Granger causality) method for high-precision connectivity analysis over time and frequency domain in multivariate coupling nonstationary systems, and applies it to source EEG signals to reveal dynamic interaction patterns in oscillatory neo-cortical sensorimotor networks. Methods: The Geweke's spectral measure is combined with the TVARX (time-varying autoregressive with exogenous input) model-ling approach, which uses multiwavelet-based ul-tra-regularized orthogonal least squares (UROLS) algo-rithm aided by APRESS (adjustable prediction error sum of squares), to obtain high-resolution time-varying CGC representations. The UROLS-APRESS algorithm, which adopts both the regularization technique and the ultra-least squares criterion to measure not only the signal themselves but also the weak derivatives of them, is a novel powerful method in constructing time-varying models with good generalization performance, and can accurately track smooth and fast changing causalities. The generalized measurement based on CGC decomposition is able to eliminate indirect influences in multivariate systems. Re-sults: The proposed method is validated on two simulations and then applied to source level motor imagery (MI) EEGs, where the predicted distributions are well recovered with high TF precision, and the detected connectivity patterns of MI-EEGs are physiologically interpretable and yield new insights into the dynamical organization of oscillatory cor-tical networks. Conclusion: Experimental results confirm the effectiveness of the TF-CGC method in tracking rapidly varying causalities of EEG-based oscillatory networks. Significance: The novel TF-CGC method is expected to provide important information of neural mechanisms of perception and cognition

    Novel Approach for Time-Varying Bispectral Analysis of Non-Stationary EEG Signals

    Get PDF
    novel parametric method, based on the non-Gaussian AR model, is proposed for the partition of on-stationary EEG data into a finite set of third-order stationary segments. With the assumption of piecewise third-order stationarity of the signal, a series of parametric bispectral estimations of the non-stationary EEG data can be performed so as to describe the time-varying non-Gaussian nonlinear characteristics of the observed EEG signals. A practical method based on the fitness of third-order statistics of the signal by using the non-Gaussian AR model, together with an algorithm with CMI is presented. The experimental results with several simulations and clinical EEG signals have also been investigated and discussed. The results show successful performance of the proposed method in estimating the time-varying bispectral structures of the EEG signals.published_or_final_versio

    Nonlinear System Identification of Neural Systems from Neurophysiological Signals

    Get PDF
    The human nervous system is one of the most complicated systems in nature. Complex nonlinear behaviours have been shown from the single neuron level to the system level. For decades, linear connectivity analysis methods, such as correlation, coherence and Granger causality, have been extensively used to assess the neural connectivities and input-output interconnections in neural systems. Recent studies indicate that these linear methods can only capture a small amount of neural activities and functional relationships, and therefore cannot describe neural behaviours in a precise or complete way. In this review, we highlight recent advances in nonlinear system identification of neural systems, corresponding time and frequency domain analysis, and novel neural connectivity measures based on nonlinear system identification techniques. We argue that nonlinear modelling and analysis are necessary to study neuronal processing and signal transfer in neural systems quantitatively. These approaches can hopefully provide new insights to advance our understanding of neurophysiological mechanisms underlying neural functions. These nonlinear approaches also have the potential to produce sensitive biomarkers to facilitate the development of precision diagnostic tools for evaluating neurological disorders and the effects of targeted intervention
    • …
    corecore