34,880 research outputs found

    Michelson Interferometry with the Keck I Telescope

    Get PDF
    We report the first use of Michelson interferometry on the Keck I telescope for diffraction-limited imaging in the near infrared JHK and L bands. By using an aperture mask located close to the f/25 secondary, the 10 m Keck primary mirror was transformed into a separate-element, multiple aperture interferometer. This has allowed diffraction-limited imaging of a large number of bright astrophysical targets, including the geometrically complex dust envelopes around a number of evolved stars. The successful restoration of these images, with dynamic ranges in excess of 200:1, highlights the significant capabilities of sparse aperture imaging as compared with more conventional filled-pupil speckle imaging for the class of bright targets considered here. In particular the enhancement of the signal-to-noise ratio of the Fourier data, precipitated by the reduction in atmospheric noise, allows high fidelity imaging of complex sources with small numbers of short-exposure images relative to speckle. Multi-epoch measurements confirm the reliability of this imaging technique and our whole dataset provides a powerful demonstration of the capabilities of aperture masking methods when utilized with the current generation of large-aperture telescopes. The relationship between these new results and recent advances in interferometry and adaptive optics is briefly discussed.Comment: Accepted into Publications of the Astronomical Society of the Pacific. To appear in vol. 112. Paper contains 10 pages, 8 figure

    Efficient Data Collection in Multimedia Vehicular Sensing Platforms

    Full text link
    Vehicles provide an ideal platform for urban sensing applications, as they can be equipped with all kinds of sensing devices that can continuously monitor the environment around the travelling vehicle. In this work we are particularly concerned with the use of vehicles as building blocks of a multimedia mobile sensor system able to capture camera snapshots of the streets to support traffic monitoring and urban surveillance tasks. However, cameras are high data-rate sensors while wireless infrastructures used for vehicular communications may face performance constraints. Thus, data redundancy mitigation is of paramount importance in such systems. To address this issue in this paper we exploit sub-modular optimisation techniques to design efficient and robust data collection schemes for multimedia vehicular sensor networks. We also explore an alternative approach for data collection that operates on longer time scales and relies only on localised decisions rather than centralised computations. We use network simulations with realistic vehicular mobility patterns to verify the performance gains of our proposed schemes compared to a baseline solution that ignores data redundancy. Simulation results show that our data collection techniques can ensure a more accurate coverage of the road network while significantly reducing the amount of transferred data

    The Douglas-Peucker algorithm for line simplification: Re-evaluation through visualization

    Get PDF
    The primary aim of this paper is to illustrate the value of visualization in cartography and to indicate that tools for the generation and manipulation of realistic images are of limited value within this application. This paper demonstrates the value of visualization within one problem in cartography, namely the generalisation of lines. It reports on the evaluation of the Douglas-Peucker algorithm for line simplification. Visualization of the simplification process and of the results suggest that the mathematical measures of performance proposed by some other researchers are inappropriate, misleading and questionable

    From Multiview Image Curves to 3D Drawings

    Full text link
    Reconstructing 3D scenes from multiple views has made impressive strides in recent years, chiefly by correlating isolated feature points, intensity patterns, or curvilinear structures. In the general setting - without controlled acquisition, abundant texture, curves and surfaces following specific models or limiting scene complexity - most methods produce unorganized point clouds, meshes, or voxel representations, with some exceptions producing unorganized clouds of 3D curve fragments. Ideally, many applications require structured representations of curves, surfaces and their spatial relationships. This paper presents a step in this direction by formulating an approach that combines 2D image curves into a collection of 3D curves, with topological connectivity between them represented as a 3D graph. This results in a 3D drawing, which is complementary to surface representations in the same sense as a 3D scaffold complements a tent taut over it. We evaluate our results against truth on synthetic and real datasets.Comment: Expanded ECCV 2016 version with tweaked figures and including an overview of the supplementary material available at multiview-3d-drawing.sourceforge.ne
    • …
    corecore