56,805 research outputs found

    A System for Deduction-based Formal Verification of Workflow-oriented Software Models

    Full text link
    The work concerns formal verification of workflow-oriented software models using deductive approach. The formal correctness of a model's behaviour is considered. Manually building logical specifications, which are considered as a set of temporal logic formulas, seems to be the significant obstacle for an inexperienced user when applying the deductive approach. A system, and its architecture, for the deduction-based verification of workflow-oriented models is proposed. The process of inference is based on the semantic tableaux method which has some advantages when compared to traditional deduction strategies. The algorithm for an automatic generation of logical specifications is proposed. The generation procedure is based on the predefined workflow patterns for BPMN, which is a standard and dominant notation for the modeling of business processes. The main idea for the approach is to consider patterns, defined in terms of temporal logic,as a kind of (logical) primitives which enable the transformation of models to temporal logic formulas constituting a logical specification. Automation of the generation process is crucial for bridging the gap between intuitiveness of the deductive reasoning and the difficulty of its practical application in the case when logical specifications are built manually. This approach has gone some way towards supporting, hopefully enhancing our understanding of, the deduction-based formal verification of workflow-oriented models.Comment: International Journal of Applied Mathematics and Computer Scienc

    Heterogeneous Proxytypes Extended: Integrating Theory-like Representations and Mechanisms with Prototypes and Exemplars

    Get PDF
    The paper introduces an extension of the proposal according to which conceptual representations in cognitive agents should be intended as heterogeneous proxytypes. The main contribution of this paper is in that it details how to reconcile, under a heterogeneous representational perspective, different theories of typicality about conceptual representation and reasoning. In particular, it provides a novel theoretical hypothesis - as well as a novel categorization algorithm called DELTA - showing how to integrate the representational and reasoning assumptions of the theory-theory of concepts with the those ascribed to the prototype and exemplars-based theories

    Applying the proto-theory of design to explain and modify the parameter analysis method of conceptual design

    Get PDF
    This article reports on the outcomes of applying the notions provided by the reconstructed proto-theory of design, based on Aristotle’s remarks, to the parameter analysis (PA) method of conceptual design. Two research questions are addressed: (1) What further clarification and explanation to the approach of PA is provided by the proto-theory? (2) Which conclusions can be drawn from the study of an empirically derived design approach through the proto-theory regarding usefulness, validity and range of that theory? An overview of PA and an application example illustrate its present model and unique characteristics. Then, seven features of the proto-theory are explained and demonstrated through geometrical problem solving and analogies are drawn between these features and the corresponding ideas in modern design thinking. Historical and current uses of the terms analysis and synthesis in design are also outlined and contrasted, showing that caution should be exercised when applying them. Consequences regarding the design moves, process and strategy of PA allow proposing modifications to its model, while demonstrating how the ancient method of analysis can contribute to better understanding of contemporary design-theoretic issues

    A logic programming framework for modeling temporal objects

    Get PDF
    Published versio

    Scientific reasoning abilities of non-science majors in physics-based courses

    Full text link
    We have found that non-STEM majors taking either a conceptual physics or astronomy course at two regional comprehensive institutions score significantly lower pre-instruction on the Lawson's Classroom Test of Scientific Reasoning (LCTSR) in comparison to national average STEM majors. The majority of non-STEM students can be classified as either concrete operational or transitional reasoners in Piaget's theory of cognitive development, whereas in the STEM population formal operational reasoners are far more prevalent. In particular, non-STEM students demonstrate significant difficulty with proportional and hypothetico-deductive reasoning. Pre-scores on the LCTSR are correlated with normalized learning gains on various concept inventories. The correlation is strongest for content that can be categorized as mostly theoretical, meaning a lack of directly observable exemplars, and weakest for content categorized as mostly descriptive, where directly observable exemplars are abundant. Although the implementation of research-verified, interactive engagement pedagogy can lead to gains in content knowledge, significant gains in theoretical content (such as force and energy) are more difficult with non-STEM students. We also observe no significant gains on the LCTSR without explicit instruction in scientific reasoning patterns. These results further demonstrate that differences in student populations are important when comparing normalized gains on concept inventories, and the achievement of significant gains in scientific reasoning requires a re-evaluation of the traditional approach to physics for non-STEM students.Comment: 18 pages, 4 figures, 3 table
    corecore