77 research outputs found

    THE ROLE OF INTEGRINS IN THE ACTIVATION OF FIBROBLASTS FROM SKIN, LUNG AND BREAST TISSUE

    Get PDF
    PhDFibroblasts are abundant mesenchymal cells present in all tissues in a quiescent state, which contribute to wound healing when activated. Cytokine transforming growth factor-β1 (TGF-β1) stimulates fibroblast-myofibroblast differentiation, which induces extracellular matrix secretion, tissue contraction and promotes cancer cell migration. Hence, chronic activity of stromal myofibroblasts correlates with a poor prognosis for cancer and organ fibrosis patients. Therefore, modulating myofibroblast activity may reduce the severity of these diseases. Previous research suggests blockade of transmembrane integrin receptors expressed by fibroblasts prevents TGF-β1- induced differentiation, indicating integrins are attractive therapeutic targets. However, fibroblasts derived from different organs exhibit heterogeneity, although their integrin expression and integrin-regulated differentiation has not been directly compared. The aim of my research was 1) to understand and compare how integrins regulate TGF-β1-induced activation of fibroblasts derived from normal skin, lung and breast tissue; 2) to examine the global gene expression of TGF-β1-treated lung fibroblasts; 3) to identify novel therapeutic targets that modulate TGF-β1-induced activation of lung fibroblasts using a drug library. qPCR showed skin, lung and breast fibroblasts differentially expressed TGF-β1- induced activation markers, including ACTA2, FN1, TIMP3, CTGF and SERPINE1, in addition to integrin genes for α1, α4, α11 and β3. Small-molecule inhibitors of αv integrins only reduced the invasion of TGF-β1-exposed skin fibroblasts, but not lung or breast fibroblasts. siRNA against α11, β3 and β5 decreased TGF-β1-induced collagen contraction and activation marker expression in skin and lung fibroblasts, while α1 siRNA prevented collagen contraction by breast fibroblasts only. RNA sequencing of TGF-β1-treated lung fibroblasts revealed pro-inflammatory and profibrotic pathways were significantly enriched, while screening TGF-β1-treated lung fibroblasts with a FDA-approved drug library identified 46 hits that significantly reduced α-smooth muscle actin and fibronectin expression. Overall, genes are differentially expressed in TGF-β1-treated skin, lung and breast fibroblasts, while different integrins in each fibroblast appear to regulate invasion, TGF-β1-induced collagen contraction and gene expression. RNA sequencing revealed TGF-β1 promotes the expression of a pro-tumour signature in lung fibroblasts and several novel therapeutic targets that modulate the activation of lung fibroblasts have been identified. Understanding these integrin-dependent and independent mechanisms will facilitate the generation of myofibroblast-targeted treatments for cancer and organ fibrosis.Biotechnology and Biological Sciences Research Council (BBSRC) and GlaxoSmithKline

    Synthetic mammalian neuromuscular junction and method of making (US)

    Get PDF
    The next generation of system biology and drug discovery tools will be functional in vitro systems composed of human cells in defined serum-free systems. These functional in vitro systems will enable understanding beyond the single cell level directly to the human condition and enable the faster and least expensive translation of basic research to therapeutics. This study reports the first pure human-based in vitro Neuromuscular Junction (NMJ) system by demonstrating the co-culture of motoneurons and skeletal muscle (SKMs) derived from human stem cells, in a defined, serum-free medium and on a patternable non-biological surface

    Development of in vitro Drug Screening Platforms Using Human Induced Pluripotent Stem Cell-Derived Cardiovascular Cells

    Get PDF
    Drug-induced cardiotoxicity is a critical challenge in the development of new drugs. Since the advent of human pluripotent stem cell-derived cardiomyocytes (CMs), researchers have explored ways to utilize these cells for in vitro preclinical drug screening applications. One area of interest is microphysiological systems (i.e. organ-on-a-chip), which aims to create more complex in vitro models of human organ systems, thus improving drug response predictions. In this dissertation, we investigated novel analysis methods and model platforms for detecting drug-induced cardiotoxicity using human induced pluripotent stem cell (iPSC)-derived cardiovascular cells. First, we utilized human iPSC-derived CMs (iPS-CMs) to establish optical methods of detecting cardioactive compounds. We utilized optical flow to assess the iPS-CM contractions captured using brightfield microscopy. The parameters were then analyzed using a machine learning algorithm to determine the accuracy of detection that can be obtained by the model for a given drug concentration. This result was compared to the analysis of the calcium transients measured using a genetically encoded calcium indicator (GCaMP6). The brightfield contraction analysis matched the detection sensitivity of fluorescent calcium transient analysis, while also being able to detect the effects of excitation-contraction decoupler (blebbistatin), which was not detected using calcium transient analysis. Second, we utilize iPS-CMs to model trastuzumab-related cardiotoxicity. Trastuzumab, a monoclonal antibody against ErbB2 (Her2), is used to treat Her2+ breast cancer and has known clinical cardiotoxicity. We demonstrated that an active ErbB2 signaling via binding of neuregulin-1 (NRG-1) to ErbB4 is necessary to detect the cardiotoxic effects of trastuzumab. Activation of ErbB2/4 pathway via NRG-1 is cardioprotective, and we also demonstrated that heparin-binding epidermal growth factor-like growth factor (HB-EGF) similarly activates the ErbB2/4 pathway. Finally, we established a co-culture platform of iPS-CMs and endothelial cells (ECs), which recapitulated the physiological phenomenon of EC-secreted NRG-1 activating the ErbB2/4 pathway on the CMs. Third, we demonstrated the use of human iPSC-derived ECs (iPS-ECs) for creating 3-dimensionial vascular networks inside microfluidic devices. The iPS-ECs were characterized for EC markers and physiological functions. We utilized a CDH5-mCherry iPSC line to create iPS-ECs that expressed VE-cadherin fused to mCherry. The vascular networks formed by the iPS-ECs were patent and perfusable, retaining 70 kDa dextran within the lumen of the vessels. The vasculature responded to small molecule inhibitors, showing increased vessel formation in response to TGF-β inhibitor SB431542 and decreased vessel formation in response to multi-targeted receptor tyrosine kinase inhibitor sunitinib. Taken together, our findings advance the current understanding and utility of iPS-CMs for drug screening applications, while establishing platforms for creating microphysiological systems that incorporate iPS-EC co-culture. The use of iPSC-derived cells opens possibilities for disease-specific and patient-specific drug screening applications in the future

    Method of co-culturing mammalian muscle cells and motoneurons

    Get PDF
    The invention provides a method of co-culturing mammalian muscle cells and mammalian motoneurons. The method comprises preparing one or more carriers coated with a covalently bonded monolayer of trimethoxysilylpropyl diethylenetriamine (DETA); suspending isolated fetal mammalian skeletal muscle cells in serum-free medium according to medium composition 1; suspending isolated fetal mammalian spinal motoneurons in serum-free medium according to medium composition 1; plating the suspended muscle cells onto the one or more carriers at a predetermined density and allowing the muscle cells to attach; plating the suspended motoneurons at a predetermined density onto the one or more carriers and allowing the motoneurons to attach; covering the one or more carriers with a mixture of medium composition 1 and medium composition 2; and incubating the carriers covered in the media mixture

    White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies.

    Get PDF
    Over the last 20 years, there has been increasing focus on the development of novel stem cell based therapies for the treatment of disorders and diseases affecting the enteric nervous system (ENS) of the gastrointestinal tract (so-called enteric neuropathies). Here, the idea is that ENS progenitor/stem cells could be transplanted into the gut wall to replace the damaged or absent neurons and glia of the ENS. This White Paper sets out experts' views on the commonly used methods and approaches to identify, isolate, purify, expand and optimize ENS stem cells, transplant them into the bowel, and assess transplant success, including restoration of gut function. We also highlight obstacles that must be overcome in order to progress from successful preclinical studies in animal models to ENS stem cell therapies in the clinic

    Psr1p interacts with SUN/sad1p and EB1/mal3p to establish the bipolar spindle

    Get PDF
    Regular Abstracts - Sunday Poster Presentations: no. 382During mitosis, interpolar microtubules from two spindle pole bodies (SPBs) interdigitate to create an antiparallel microtubule array for accommodating numerous regulatory proteins. Among these proteins, the kinesin-5 cut7p/Eg5 is the key player responsible for sliding apart antiparallel microtubules and thus helps in establishing the bipolar spindle. At the onset of mitosis, two SPBs are adjacent to one another with most microtubules running nearly parallel toward the nuclear envelope, creating an unfavorable microtubule configuration for the kinesin-5 kinesins. Therefore, how the cell organizes the antiparallel microtubule array in the first place at mitotic onset remains enigmatic. Here, we show that a novel protein psrp1p localizes to the SPB and plays a key role in organizing the antiparallel microtubule array. The absence of psr1+ leads to a transient monopolar spindle and massive chromosome loss. Further functional characterization demonstrates that psr1p is recruited to the SPB through interaction with the conserved SUN protein sad1p and that psr1p physically interacts with the conserved microtubule plus tip protein mal3p/EB1. These results suggest a model that psr1p serves as a linking protein between sad1p/SUN and mal3p/EB1 to allow microtubule plus ends to be coupled to the SPBs for organization of an antiparallel microtubule array. Thus, we conclude that psr1p is involved in organizing the antiparallel microtubule array in the first place at mitosis onset by interaction with SUN/sad1p and EB1/mal3p, thereby establishing the bipolar spindle.postprin
    corecore